Step |
Hyp |
Ref |
Expression |
1 |
|
2lgslem1b.i |
|
2 |
|
2lgslem1b.f |
|
3 |
|
eqeq1 |
|
4 |
3
|
rexbidv |
|
5 |
|
elfzelz |
|
6 |
5 1
|
eleq2s |
|
7 |
|
2z |
|
8 |
7
|
a1i |
|
9 |
6 8
|
zmulcld |
|
10 |
|
id |
|
11 |
|
oveq1 |
|
12 |
11
|
eqeq2d |
|
13 |
12
|
adantl |
|
14 |
|
eqidd |
|
15 |
10 13 14
|
rspcedvd |
|
16 |
4 9 15
|
elrabd |
|
17 |
2 16
|
fmpti |
|
18 |
|
oveq1 |
|
19 |
|
simpl |
|
20 |
|
ovexd |
|
21 |
2 18 19 20
|
fvmptd3 |
|
22 |
|
oveq1 |
|
23 |
|
simpr |
|
24 |
|
ovexd |
|
25 |
2 22 23 24
|
fvmptd3 |
|
26 |
21 25
|
eqeq12d |
|
27 |
|
elfzelz |
|
28 |
27 1
|
eleq2s |
|
29 |
28
|
zcnd |
|
30 |
29
|
adantr |
|
31 |
|
elfzelz |
|
32 |
31 1
|
eleq2s |
|
33 |
32
|
zcnd |
|
34 |
33
|
adantl |
|
35 |
|
2cnd |
|
36 |
|
2ne0 |
|
37 |
36
|
a1i |
|
38 |
30 34 35 37
|
mulcan2d |
|
39 |
38
|
biimpd |
|
40 |
26 39
|
sylbid |
|
41 |
40
|
rgen2 |
|
42 |
|
dff13 |
|
43 |
17 41 42
|
mpbir2an |
|
44 |
|
oveq1 |
|
45 |
44
|
eqeq2d |
|
46 |
45
|
cbvrexvw |
|
47 |
|
elfzelz |
|
48 |
7
|
a1i |
|
49 |
47 48
|
zmulcld |
|
50 |
49 1
|
eleq2s |
|
51 |
|
eleq1 |
|
52 |
50 51
|
syl5ibrcom |
|
53 |
52
|
rexlimiv |
|
54 |
53
|
pm4.71ri |
|
55 |
46 54
|
bitri |
|
56 |
55
|
abbii |
|
57 |
2
|
rnmpt |
|
58 |
|
df-rab |
|
59 |
56 57 58
|
3eqtr4i |
|
60 |
|
dff1o5 |
|
61 |
43 59 60
|
mpbir2an |
|