Metamath Proof Explorer


Theorem 2lgslem1b

Description: Lemma 2 for 2lgslem1 . (Contributed by AV, 18-Jun-2021)

Ref Expression
Hypotheses 2lgslem1b.i I = A B
2lgslem1b.f F = j I j 2
Assertion 2lgslem1b F : I 1-1 onto x | i I x = i 2

Proof

Step Hyp Ref Expression
1 2lgslem1b.i I = A B
2 2lgslem1b.f F = j I j 2
3 eqeq1 x = j 2 x = i 2 j 2 = i 2
4 3 rexbidv x = j 2 i I x = i 2 i I j 2 = i 2
5 elfzelz j A B j
6 5 1 eleq2s j I j
7 2z 2
8 7 a1i j I 2
9 6 8 zmulcld j I j 2
10 id j I j I
11 oveq1 i = j i 2 = j 2
12 11 eqeq2d i = j j 2 = i 2 j 2 = j 2
13 12 adantl j I i = j j 2 = i 2 j 2 = j 2
14 eqidd j I j 2 = j 2
15 10 13 14 rspcedvd j I i I j 2 = i 2
16 4 9 15 elrabd j I j 2 x | i I x = i 2
17 2 16 fmpti F : I x | i I x = i 2
18 oveq1 j = y j 2 = y 2
19 simpl y I z I y I
20 ovexd y I z I y 2 V
21 2 18 19 20 fvmptd3 y I z I F y = y 2
22 oveq1 j = z j 2 = z 2
23 simpr y I z I z I
24 ovexd y I z I z 2 V
25 2 22 23 24 fvmptd3 y I z I F z = z 2
26 21 25 eqeq12d y I z I F y = F z y 2 = z 2
27 elfzelz y A B y
28 27 1 eleq2s y I y
29 28 zcnd y I y
30 29 adantr y I z I y
31 elfzelz z A B z
32 31 1 eleq2s z I z
33 32 zcnd z I z
34 33 adantl y I z I z
35 2cnd y I z I 2
36 2ne0 2 0
37 36 a1i y I z I 2 0
38 30 34 35 37 mulcan2d y I z I y 2 = z 2 y = z
39 38 biimpd y I z I y 2 = z 2 y = z
40 26 39 sylbid y I z I F y = F z y = z
41 40 rgen2 y I z I F y = F z y = z
42 dff13 F : I 1-1 x | i I x = i 2 F : I x | i I x = i 2 y I z I F y = F z y = z
43 17 41 42 mpbir2an F : I 1-1 x | i I x = i 2
44 oveq1 j = i j 2 = i 2
45 44 eqeq2d j = i x = j 2 x = i 2
46 45 cbvrexvw j I x = j 2 i I x = i 2
47 elfzelz i A B i
48 7 a1i i A B 2
49 47 48 zmulcld i A B i 2
50 49 1 eleq2s i I i 2
51 eleq1 x = i 2 x i 2
52 50 51 syl5ibrcom i I x = i 2 x
53 52 rexlimiv i I x = i 2 x
54 53 pm4.71ri i I x = i 2 x i I x = i 2
55 46 54 bitri j I x = j 2 x i I x = i 2
56 55 abbii x | j I x = j 2 = x | x i I x = i 2
57 2 rnmpt ran F = x | j I x = j 2
58 df-rab x | i I x = i 2 = x | x i I x = i 2
59 56 57 58 3eqtr4i ran F = x | i I x = i 2
60 dff1o5 F : I 1-1 onto x | i I x = i 2 F : I 1-1 x | i I x = i 2 ran F = x | i I x = i 2
61 43 59 60 mpbir2an F : I 1-1 onto x | i I x = i 2