| Step |
Hyp |
Ref |
Expression |
| 1 |
|
prmnn |
|
| 2 |
|
nnnn0 |
|
| 3 |
|
oddnn02np1 |
|
| 4 |
1 2 3
|
3syl |
|
| 5 |
|
iftrue |
|
| 6 |
5
|
adantr |
|
| 7 |
|
2nn |
|
| 8 |
|
nn0ledivnn |
|
| 9 |
7 8
|
mpan2 |
|
| 10 |
9
|
adantl |
|
| 11 |
6 10
|
eqbrtrd |
|
| 12 |
|
iffalse |
|
| 13 |
12
|
adantr |
|
| 14 |
|
nn0re |
|
| 15 |
|
peano2rem |
|
| 16 |
15
|
rehalfcld |
|
| 17 |
14 16
|
syl |
|
| 18 |
14
|
rehalfcld |
|
| 19 |
14
|
lem1d |
|
| 20 |
14 15
|
syl |
|
| 21 |
|
2re |
|
| 22 |
|
2pos |
|
| 23 |
21 22
|
pm3.2i |
|
| 24 |
23
|
a1i |
|
| 25 |
|
lediv1 |
|
| 26 |
20 14 24 25
|
syl3anc |
|
| 27 |
19 26
|
mpbid |
|
| 28 |
17 18 14 27 9
|
letrd |
|
| 29 |
28
|
adantl |
|
| 30 |
13 29
|
eqbrtrd |
|
| 31 |
11 30
|
pm2.61ian |
|
| 32 |
31
|
ad2antlr |
|
| 33 |
|
nn0z |
|
| 34 |
33
|
adantl |
|
| 35 |
|
eqcom |
|
| 36 |
35
|
biimpi |
|
| 37 |
|
flodddiv4 |
|
| 38 |
34 36 37
|
syl2an |
|
| 39 |
|
oveq1 |
|
| 40 |
39
|
eqcoms |
|
| 41 |
40
|
adantl |
|
| 42 |
|
2nn0 |
|
| 43 |
42
|
a1i |
|
| 44 |
|
id |
|
| 45 |
43 44
|
nn0mulcld |
|
| 46 |
45
|
nn0cnd |
|
| 47 |
|
pncan1 |
|
| 48 |
46 47
|
syl |
|
| 49 |
48
|
ad2antlr |
|
| 50 |
41 49
|
eqtrd |
|
| 51 |
50
|
oveq1d |
|
| 52 |
|
nn0cn |
|
| 53 |
|
2cnd |
|
| 54 |
|
2ne0 |
|
| 55 |
54
|
a1i |
|
| 56 |
52 53 55
|
divcan3d |
|
| 57 |
56
|
ad2antlr |
|
| 58 |
51 57
|
eqtrd |
|
| 59 |
32 38 58
|
3brtr4d |
|
| 60 |
59
|
rexlimdva2 |
|
| 61 |
4 60
|
sylbid |
|
| 62 |
61
|
imp |
|