Step |
Hyp |
Ref |
Expression |
1 |
|
prmnn |
|
2 |
|
nnnn0 |
|
3 |
|
oddnn02np1 |
|
4 |
1 2 3
|
3syl |
|
5 |
|
iftrue |
|
6 |
5
|
adantr |
|
7 |
|
2nn |
|
8 |
|
nn0ledivnn |
|
9 |
7 8
|
mpan2 |
|
10 |
9
|
adantl |
|
11 |
6 10
|
eqbrtrd |
|
12 |
|
iffalse |
|
13 |
12
|
adantr |
|
14 |
|
nn0re |
|
15 |
|
peano2rem |
|
16 |
15
|
rehalfcld |
|
17 |
14 16
|
syl |
|
18 |
14
|
rehalfcld |
|
19 |
14
|
lem1d |
|
20 |
14 15
|
syl |
|
21 |
|
2re |
|
22 |
|
2pos |
|
23 |
21 22
|
pm3.2i |
|
24 |
23
|
a1i |
|
25 |
|
lediv1 |
|
26 |
20 14 24 25
|
syl3anc |
|
27 |
19 26
|
mpbid |
|
28 |
17 18 14 27 9
|
letrd |
|
29 |
28
|
adantl |
|
30 |
13 29
|
eqbrtrd |
|
31 |
11 30
|
pm2.61ian |
|
32 |
31
|
ad2antlr |
|
33 |
|
nn0z |
|
34 |
33
|
adantl |
|
35 |
|
eqcom |
|
36 |
35
|
biimpi |
|
37 |
|
flodddiv4 |
|
38 |
34 36 37
|
syl2an |
|
39 |
|
oveq1 |
|
40 |
39
|
eqcoms |
|
41 |
40
|
adantl |
|
42 |
|
2nn0 |
|
43 |
42
|
a1i |
|
44 |
|
id |
|
45 |
43 44
|
nn0mulcld |
|
46 |
45
|
nn0cnd |
|
47 |
|
pncan1 |
|
48 |
46 47
|
syl |
|
49 |
48
|
ad2antlr |
|
50 |
41 49
|
eqtrd |
|
51 |
50
|
oveq1d |
|
52 |
|
nn0cn |
|
53 |
|
2cnd |
|
54 |
|
2ne0 |
|
55 |
54
|
a1i |
|
56 |
52 53 55
|
divcan3d |
|
57 |
56
|
ad2antlr |
|
58 |
51 57
|
eqtrd |
|
59 |
32 38 58
|
3brtr4d |
|
60 |
59
|
rexlimdva2 |
|
61 |
4 60
|
sylbid |
|
62 |
61
|
imp |
|