Metamath Proof Explorer


Theorem 2lgslem2

Description: Lemma 2 for 2lgs . (Contributed by AV, 20-Jun-2021)

Ref Expression
Hypothesis 2lgslem2.n N = P 1 2 P 4
Assertion 2lgslem2 P ¬ 2 P N

Proof

Step Hyp Ref Expression
1 2lgslem2.n N = P 1 2 P 4
2 simpl P ¬ 2 P P
3 elsng P P 2 P = 2
4 z2even 2 2
5 breq2 P = 2 2 P 2 2
6 4 5 mpbiri P = 2 2 P
7 3 6 syl6bi P P 2 2 P
8 7 con3dimp P ¬ 2 P ¬ P 2
9 2 8 eldifd P ¬ 2 P P 2
10 oddprm P 2 P 1 2
11 10 nnzd P 2 P 1 2
12 9 11 syl P ¬ 2 P P 1 2
13 prmz P P
14 13 zred P P
15 4re 4
16 15 a1i P 4
17 4ne0 4 0
18 17 a1i P 4 0
19 14 16 18 redivcld P P 4
20 19 flcld P P 4
21 20 adantr P ¬ 2 P P 4
22 12 21 zsubcld P ¬ 2 P P 1 2 P 4
23 1 22 eqeltrid P ¬ 2 P N