Metamath Proof Explorer


Theorem 2lgslem3

Description: Lemma 3 for 2lgs . (Contributed by AV, 16-Jul-2021)

Ref Expression
Hypothesis 2lgslem2.n N = P 1 2 P 4
Assertion 2lgslem3 P ¬ 2 P N mod 2 = if P mod 8 1 7 0 1

Proof

Step Hyp Ref Expression
1 2lgslem2.n N = P 1 2 P 4
2 nnz P P
3 lgsdir2lem3 P ¬ 2 P P mod 8 1 7 3 5
4 2 3 sylan P ¬ 2 P P mod 8 1 7 3 5
5 elun P mod 8 1 7 3 5 P mod 8 1 7 P mod 8 3 5
6 ovex P mod 8 V
7 6 elpr P mod 8 1 7 P mod 8 = 1 P mod 8 = 7
8 1 2lgslem3a1 P P mod 8 = 1 N mod 2 = 0
9 8 a1d P P mod 8 = 1 ¬ 2 P N mod 2 = 0
10 9 expcom P mod 8 = 1 P ¬ 2 P N mod 2 = 0
11 10 impd P mod 8 = 1 P ¬ 2 P N mod 2 = 0
12 1 2lgslem3d1 P P mod 8 = 7 N mod 2 = 0
13 12 a1d P P mod 8 = 7 ¬ 2 P N mod 2 = 0
14 13 expcom P mod 8 = 7 P ¬ 2 P N mod 2 = 0
15 14 impd P mod 8 = 7 P ¬ 2 P N mod 2 = 0
16 11 15 jaoi P mod 8 = 1 P mod 8 = 7 P ¬ 2 P N mod 2 = 0
17 7 16 sylbi P mod 8 1 7 P ¬ 2 P N mod 2 = 0
18 17 imp P mod 8 1 7 P ¬ 2 P N mod 2 = 0
19 iftrue P mod 8 1 7 if P mod 8 1 7 0 1 = 0
20 19 adantr P mod 8 1 7 P ¬ 2 P if P mod 8 1 7 0 1 = 0
21 18 20 eqtr4d P mod 8 1 7 P ¬ 2 P N mod 2 = if P mod 8 1 7 0 1
22 21 ex P mod 8 1 7 P ¬ 2 P N mod 2 = if P mod 8 1 7 0 1
23 6 elpr P mod 8 3 5 P mod 8 = 3 P mod 8 = 5
24 1 2lgslem3b1 P P mod 8 = 3 N mod 2 = 1
25 24 expcom P mod 8 = 3 P N mod 2 = 1
26 1 2lgslem3c1 P P mod 8 = 5 N mod 2 = 1
27 26 expcom P mod 8 = 5 P N mod 2 = 1
28 25 27 jaoi P mod 8 = 3 P mod 8 = 5 P N mod 2 = 1
29 28 imp P mod 8 = 3 P mod 8 = 5 P N mod 2 = 1
30 1re 1
31 1lt3 1 < 3
32 30 31 ltneii 1 3
33 32 nesymi ¬ 3 = 1
34 3re 3
35 3lt7 3 < 7
36 34 35 ltneii 3 7
37 36 neii ¬ 3 = 7
38 33 37 pm3.2i ¬ 3 = 1 ¬ 3 = 7
39 eqeq1 P mod 8 = 3 P mod 8 = 1 3 = 1
40 39 notbid P mod 8 = 3 ¬ P mod 8 = 1 ¬ 3 = 1
41 eqeq1 P mod 8 = 3 P mod 8 = 7 3 = 7
42 41 notbid P mod 8 = 3 ¬ P mod 8 = 7 ¬ 3 = 7
43 40 42 anbi12d P mod 8 = 3 ¬ P mod 8 = 1 ¬ P mod 8 = 7 ¬ 3 = 1 ¬ 3 = 7
44 38 43 mpbiri P mod 8 = 3 ¬ P mod 8 = 1 ¬ P mod 8 = 7
45 1lt5 1 < 5
46 30 45 ltneii 1 5
47 46 nesymi ¬ 5 = 1
48 5re 5
49 5lt7 5 < 7
50 48 49 ltneii 5 7
51 50 neii ¬ 5 = 7
52 47 51 pm3.2i ¬ 5 = 1 ¬ 5 = 7
53 eqeq1 P mod 8 = 5 P mod 8 = 1 5 = 1
54 53 notbid P mod 8 = 5 ¬ P mod 8 = 1 ¬ 5 = 1
55 eqeq1 P mod 8 = 5 P mod 8 = 7 5 = 7
56 55 notbid P mod 8 = 5 ¬ P mod 8 = 7 ¬ 5 = 7
57 54 56 anbi12d P mod 8 = 5 ¬ P mod 8 = 1 ¬ P mod 8 = 7 ¬ 5 = 1 ¬ 5 = 7
58 52 57 mpbiri P mod 8 = 5 ¬ P mod 8 = 1 ¬ P mod 8 = 7
59 44 58 jaoi P mod 8 = 3 P mod 8 = 5 ¬ P mod 8 = 1 ¬ P mod 8 = 7
60 59 adantr P mod 8 = 3 P mod 8 = 5 P ¬ P mod 8 = 1 ¬ P mod 8 = 7
61 ioran ¬ P mod 8 = 1 P mod 8 = 7 ¬ P mod 8 = 1 ¬ P mod 8 = 7
62 61 7 xchnxbir ¬ P mod 8 1 7 ¬ P mod 8 = 1 ¬ P mod 8 = 7
63 60 62 sylibr P mod 8 = 3 P mod 8 = 5 P ¬ P mod 8 1 7
64 63 iffalsed P mod 8 = 3 P mod 8 = 5 P if P mod 8 1 7 0 1 = 1
65 29 64 eqtr4d P mod 8 = 3 P mod 8 = 5 P N mod 2 = if P mod 8 1 7 0 1
66 65 a1d P mod 8 = 3 P mod 8 = 5 P ¬ 2 P N mod 2 = if P mod 8 1 7 0 1
67 66 expimpd P mod 8 = 3 P mod 8 = 5 P ¬ 2 P N mod 2 = if P mod 8 1 7 0 1
68 23 67 sylbi P mod 8 3 5 P ¬ 2 P N mod 2 = if P mod 8 1 7 0 1
69 22 68 jaoi P mod 8 1 7 P mod 8 3 5 P ¬ 2 P N mod 2 = if P mod 8 1 7 0 1
70 5 69 sylbi P mod 8 1 7 3 5 P ¬ 2 P N mod 2 = if P mod 8 1 7 0 1
71 4 70 mpcom P ¬ 2 P N mod 2 = if P mod 8 1 7 0 1