Step |
Hyp |
Ref |
Expression |
1 |
|
2lgslem2.n |
|
2 |
|
oveq1 |
|
3 |
2
|
oveq1d |
|
4 |
|
fvoveq1 |
|
5 |
3 4
|
oveq12d |
|
6 |
1 5
|
syl5eq |
|
7 |
|
8nn0 |
|
8 |
7
|
a1i |
|
9 |
|
id |
|
10 |
8 9
|
nn0mulcld |
|
11 |
10
|
nn0cnd |
|
12 |
|
pncan1 |
|
13 |
11 12
|
syl |
|
14 |
13
|
oveq1d |
|
15 |
|
4cn |
|
16 |
|
2cn |
|
17 |
|
4t2e8 |
|
18 |
15 16 17
|
mulcomli |
|
19 |
18
|
eqcomi |
|
20 |
19
|
a1i |
|
21 |
20
|
oveq1d |
|
22 |
16
|
a1i |
|
23 |
15
|
a1i |
|
24 |
|
nn0cn |
|
25 |
22 23 24
|
mulassd |
|
26 |
21 25
|
eqtrd |
|
27 |
26
|
oveq1d |
|
28 |
|
4nn0 |
|
29 |
28
|
a1i |
|
30 |
29 9
|
nn0mulcld |
|
31 |
30
|
nn0cnd |
|
32 |
|
2ne0 |
|
33 |
32
|
a1i |
|
34 |
31 22 33
|
divcan3d |
|
35 |
14 27 34
|
3eqtrd |
|
36 |
|
1cnd |
|
37 |
|
4ne0 |
|
38 |
15 37
|
pm3.2i |
|
39 |
38
|
a1i |
|
40 |
|
divdir |
|
41 |
11 36 39 40
|
syl3anc |
|
42 |
|
8cn |
|
43 |
42
|
a1i |
|
44 |
|
div23 |
|
45 |
43 24 39 44
|
syl3anc |
|
46 |
17
|
eqcomi |
|
47 |
46
|
oveq1i |
|
48 |
16 15 37
|
divcan3i |
|
49 |
47 48
|
eqtri |
|
50 |
49
|
a1i |
|
51 |
50
|
oveq1d |
|
52 |
45 51
|
eqtrd |
|
53 |
52
|
oveq1d |
|
54 |
41 53
|
eqtrd |
|
55 |
54
|
fveq2d |
|
56 |
|
1lt4 |
|
57 |
|
2nn0 |
|
58 |
57
|
a1i |
|
59 |
58 9
|
nn0mulcld |
|
60 |
59
|
nn0zd |
|
61 |
|
1nn0 |
|
62 |
61
|
a1i |
|
63 |
|
4nn |
|
64 |
63
|
a1i |
|
65 |
|
adddivflid |
|
66 |
60 62 64 65
|
syl3anc |
|
67 |
56 66
|
mpbii |
|
68 |
55 67
|
eqtrd |
|
69 |
35 68
|
oveq12d |
|
70 |
|
2t2e4 |
|
71 |
70
|
eqcomi |
|
72 |
71
|
a1i |
|
73 |
72
|
oveq1d |
|
74 |
22 22 24
|
mulassd |
|
75 |
73 74
|
eqtrd |
|
76 |
75
|
oveq1d |
|
77 |
59
|
nn0cnd |
|
78 |
|
2txmxeqx |
|
79 |
77 78
|
syl |
|
80 |
69 76 79
|
3eqtrd |
|
81 |
6 80
|
sylan9eqr |
|