Step |
Hyp |
Ref |
Expression |
1 |
|
2lgslem2.n |
|
2 |
|
nnnn0 |
|
3 |
|
8nn |
|
4 |
|
nnrp |
|
5 |
3 4
|
ax-mp |
|
6 |
|
modmuladdnn0 |
|
7 |
2 5 6
|
sylancl |
|
8 |
|
simpr |
|
9 |
|
nn0cn |
|
10 |
|
8cn |
|
11 |
10
|
a1i |
|
12 |
9 11
|
mulcomd |
|
13 |
12
|
adantl |
|
14 |
13
|
oveq1d |
|
15 |
14
|
eqeq2d |
|
16 |
15
|
biimpa |
|
17 |
1
|
2lgslem3d |
|
18 |
8 16 17
|
syl2an2r |
|
19 |
|
oveq1 |
|
20 |
|
2t1e2 |
|
21 |
20
|
eqcomi |
|
22 |
21
|
a1i |
|
23 |
22
|
oveq2d |
|
24 |
|
2cnd |
|
25 |
|
1cnd |
|
26 |
|
adddi |
|
27 |
26
|
eqcomd |
|
28 |
24 9 25 27
|
syl3anc |
|
29 |
9 25
|
addcld |
|
30 |
24 29
|
mulcomd |
|
31 |
23 28 30
|
3eqtrd |
|
32 |
31
|
oveq1d |
|
33 |
|
peano2nn0 |
|
34 |
33
|
nn0zd |
|
35 |
|
2rp |
|
36 |
|
mulmod0 |
|
37 |
34 35 36
|
sylancl |
|
38 |
32 37
|
eqtrd |
|
39 |
19 38
|
sylan9eqr |
|
40 |
8 18 39
|
syl2an2r |
|
41 |
40
|
rexlimdva2 |
|
42 |
7 41
|
syld |
|
43 |
42
|
imp |
|