Step |
Hyp |
Ref |
Expression |
1 |
|
eldifi |
|
2 |
|
2lgs |
|
3 |
1 2
|
syl |
|
4 |
|
simpl |
|
5 |
|
eqcom |
|
6 |
5
|
a1i |
|
7 |
|
nnoddn2prm |
|
8 |
|
nnz |
|
9 |
8
|
anim1i |
|
10 |
7 9
|
syl |
|
11 |
|
sqoddm1div8z |
|
12 |
10 11
|
syl |
|
13 |
|
m1exp1 |
|
14 |
12 13
|
syl |
|
15 |
|
2lgsoddprmlem4 |
|
16 |
10 15
|
syl |
|
17 |
6 14 16
|
3bitrd |
|
18 |
17
|
biimparc |
|
19 |
18
|
adantl |
|
20 |
4 19
|
eqtrd |
|
21 |
20
|
exp32 |
|
22 |
|
2z |
|
23 |
|
prmz |
|
24 |
1 23
|
syl |
|
25 |
|
lgscl1 |
|
26 |
22 24 25
|
sylancr |
|
27 |
|
ovex |
|
28 |
27
|
eltp |
|
29 |
|
simpl |
|
30 |
16
|
notbid |
|
31 |
30
|
biimpar |
|
32 |
|
m1expo |
|
33 |
12 31 32
|
syl2an2r |
|
34 |
33
|
eqcomd |
|
35 |
34
|
adantl |
|
36 |
29 35
|
eqtrd |
|
37 |
36
|
a1d |
|
38 |
37
|
exp32 |
|
39 |
|
eldifsn |
|
40 |
|
simpr |
|
41 |
40
|
necomd |
|
42 |
39 41
|
sylbi |
|
43 |
|
2prm |
|
44 |
|
prmrp |
|
45 |
43 1 44
|
sylancr |
|
46 |
42 45
|
mpbird |
|
47 |
|
lgsne0 |
|
48 |
22 24 47
|
sylancr |
|
49 |
46 48
|
mpbird |
|
50 |
|
eqneqall |
|
51 |
49 50
|
syl5 |
|
52 |
|
pm2.24 |
|
53 |
52
|
2a1d |
|
54 |
38 51 53
|
3jaoi |
|
55 |
28 54
|
sylbi |
|
56 |
26 55
|
mpcom |
|
57 |
56
|
com13 |
|
58 |
21 57
|
bija |
|
59 |
3 58
|
mpcom |
|