Database
BASIC REAL AND COMPLEX FUNCTIONS
Basic number theory
Quadratic reciprocity
2lgsoddprmlem1
Next ⟩
2lgsoddprmlem2
Metamath Proof Explorer
Ascii
Unicode
Theorem
2lgsoddprmlem1
Description:
Lemma 1 for
2lgsoddprm
.
(Contributed by
AV
, 19-Jul-2021)
Ref
Expression
Assertion
2lgsoddprmlem1
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
N
=
8
⁢
A
+
B
→
N
2
−
1
8
=
8
⁢
A
2
+
2
⁢
A
⁢
B
+
B
2
−
1
8
Proof
Step
Hyp
Ref
Expression
1
oveq1
⊢
N
=
8
⁢
A
+
B
→
N
2
=
8
⁢
A
+
B
2
2
1
3ad2ant3
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
N
=
8
⁢
A
+
B
→
N
2
=
8
⁢
A
+
B
2
3
2
oveq1d
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
N
=
8
⁢
A
+
B
→
N
2
−
1
=
8
⁢
A
+
B
2
−
1
4
3
oveq1d
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
N
=
8
⁢
A
+
B
→
N
2
−
1
8
=
8
⁢
A
+
B
2
−
1
8
5
zcn
⊢
A
∈
ℤ
→
A
∈
ℂ
6
5
adantr
⊢
A
∈
ℤ
∧
B
∈
ℤ
→
A
∈
ℂ
7
zcn
⊢
B
∈
ℤ
→
B
∈
ℂ
8
7
adantl
⊢
A
∈
ℤ
∧
B
∈
ℤ
→
B
∈
ℂ
9
1cnd
⊢
A
∈
ℤ
∧
B
∈
ℤ
→
1
∈
ℂ
10
8cn
⊢
8
∈
ℂ
11
8re
⊢
8
∈
ℝ
12
8pos
⊢
0
<
8
13
11
12
gt0ne0ii
⊢
8
≠
0
14
10
13
pm3.2i
⊢
8
∈
ℂ
∧
8
≠
0
15
14
a1i
⊢
A
∈
ℤ
∧
B
∈
ℤ
→
8
∈
ℂ
∧
8
≠
0
16
mulsubdivbinom2
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
1
∈
ℂ
∧
8
∈
ℂ
∧
8
≠
0
→
8
⁢
A
+
B
2
−
1
8
=
8
⁢
A
2
+
2
⁢
A
⁢
B
+
B
2
−
1
8
17
6
8
9
15
16
syl31anc
⊢
A
∈
ℤ
∧
B
∈
ℤ
→
8
⁢
A
+
B
2
−
1
8
=
8
⁢
A
2
+
2
⁢
A
⁢
B
+
B
2
−
1
8
18
17
3adant3
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
N
=
8
⁢
A
+
B
→
8
⁢
A
+
B
2
−
1
8
=
8
⁢
A
2
+
2
⁢
A
⁢
B
+
B
2
−
1
8
19
4
18
eqtrd
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
N
=
8
⁢
A
+
B
→
N
2
−
1
8
=
8
⁢
A
2
+
2
⁢
A
⁢
B
+
B
2
−
1
8