Database
BASIC REAL AND COMPLEX FUNCTIONS
Basic number theory
Quadratic reciprocity
2lgsoddprmlem3a
Next ⟩
2lgsoddprmlem3b
Metamath Proof Explorer
Ascii
Unicode
Theorem
2lgsoddprmlem3a
Description:
Lemma 1 for
2lgsoddprmlem3
.
(Contributed by
AV
, 20-Jul-2021)
Ref
Expression
Assertion
2lgsoddprmlem3a
⊢
1
2
−
1
8
=
0
Proof
Step
Hyp
Ref
Expression
1
sq1
⊢
1
2
=
1
2
1
oveq1i
⊢
1
2
−
1
=
1
−
1
3
1m1e0
⊢
1
−
1
=
0
4
2
3
eqtri
⊢
1
2
−
1
=
0
5
4
oveq1i
⊢
1
2
−
1
8
=
0
8
6
8cn
⊢
8
∈
ℂ
7
0re
⊢
0
∈
ℝ
8
8pos
⊢
0
<
8
9
7
8
gtneii
⊢
8
≠
0
10
6
9
div0i
⊢
0
8
=
0
11
5
10
eqtri
⊢
1
2
−
1
8
=
0