Metamath Proof Explorer


Theorem 2lgsoddprmlem3a

Description: Lemma 1 for 2lgsoddprmlem3 . (Contributed by AV, 20-Jul-2021)

Ref Expression
Assertion 2lgsoddprmlem3a 1 2 1 8 = 0

Proof

Step Hyp Ref Expression
1 sq1 1 2 = 1
2 1 oveq1i 1 2 1 = 1 1
3 1m1e0 1 1 = 0
4 2 3 eqtri 1 2 1 = 0
5 4 oveq1i 1 2 1 8 = 0 8
6 8cn 8
7 0re 0
8 8pos 0 < 8
9 7 8 gtneii 8 0
10 6 9 div0i 0 8 = 0
11 5 10 eqtri 1 2 1 8 = 0