Metamath Proof Explorer


Theorem 2lgsoddprmlem3b

Description: Lemma 2 for 2lgsoddprmlem3 . (Contributed by AV, 20-Jul-2021)

Ref Expression
Assertion 2lgsoddprmlem3b 3 2 1 8 = 1

Proof

Step Hyp Ref Expression
1 sq3 3 2 = 9
2 1 oveq1i 3 2 1 = 9 1
3 9m1e8 9 1 = 8
4 2 3 eqtri 3 2 1 = 8
5 4 oveq1i 3 2 1 8 = 8 8
6 8cn 8
7 0re 0
8 8pos 0 < 8
9 7 8 gtneii 8 0
10 6 9 dividi 8 8 = 1
11 5 10 eqtri 3 2 1 8 = 1