Database
BASIC REAL AND COMPLEX FUNCTIONS
Basic number theory
Quadratic reciprocity
2lgsoddprmlem3b
Next ⟩
2lgsoddprmlem3c
Metamath Proof Explorer
Ascii
Unicode
Theorem
2lgsoddprmlem3b
Description:
Lemma 2 for
2lgsoddprmlem3
.
(Contributed by
AV
, 20-Jul-2021)
Ref
Expression
Assertion
2lgsoddprmlem3b
⊢
3
2
−
1
8
=
1
Proof
Step
Hyp
Ref
Expression
1
sq3
⊢
3
2
=
9
2
1
oveq1i
⊢
3
2
−
1
=
9
−
1
3
9m1e8
⊢
9
−
1
=
8
4
2
3
eqtri
⊢
3
2
−
1
=
8
5
4
oveq1i
⊢
3
2
−
1
8
=
8
8
6
8cn
⊢
8
∈
ℂ
7
0re
⊢
0
∈
ℝ
8
8pos
⊢
0
<
8
9
7
8
gtneii
⊢
8
≠
0
10
6
9
dividi
⊢
8
8
=
1
11
5
10
eqtri
⊢
3
2
−
1
8
=
1