Metamath Proof Explorer


Theorem 2lgsoddprmlem3c

Description: Lemma 3 for 2lgsoddprmlem3 . (Contributed by AV, 20-Jul-2021)

Ref Expression
Assertion 2lgsoddprmlem3c 5 2 1 8 = 3

Proof

Step Hyp Ref Expression
1 df-5 5 = 4 + 1
2 1 oveq1i 5 2 = 4 + 1 2
3 4cn 4
4 binom21 4 4 + 1 2 = 4 2 + 2 4 + 1
5 3 4 ax-mp 4 + 1 2 = 4 2 + 2 4 + 1
6 2 5 eqtri 5 2 = 4 2 + 2 4 + 1
7 6 oveq1i 5 2 1 = 4 2 + 2 4 + 1 - 1
8 3cn 3
9 8cn 8
10 8 9 mulcli 3 8
11 ax-1cn 1
12 sq4e2t8 4 2 = 2 8
13 2cn 2
14 4t2e8 4 2 = 8
15 9 mulid2i 1 8 = 8
16 14 15 eqtr4i 4 2 = 1 8
17 3 13 16 mulcomli 2 4 = 1 8
18 12 17 oveq12i 4 2 + 2 4 = 2 8 + 1 8
19 13 11 9 adddiri 2 + 1 8 = 2 8 + 1 8
20 2p1e3 2 + 1 = 3
21 20 oveq1i 2 + 1 8 = 3 8
22 18 19 21 3eqtr2i 4 2 + 2 4 = 3 8
23 22 oveq1i 4 2 + 2 4 + 1 = 3 8 + 1
24 10 11 23 mvrraddi 4 2 + 2 4 + 1 - 1 = 3 8
25 7 24 eqtri 5 2 1 = 3 8
26 25 oveq1i 5 2 1 8 = 3 8 8
27 0re 0
28 8pos 0 < 8
29 27 28 gtneii 8 0
30 8 9 29 divcan4i 3 8 8 = 3
31 26 30 eqtri 5 2 1 8 = 3