Database
BASIC REAL AND COMPLEX FUNCTIONS
Basic number theory
Quadratic reciprocity
2lgsoddprmlem4
Next ⟩
2lgsoddprm
Metamath Proof Explorer
Ascii
Unicode
Theorem
2lgsoddprmlem4
Description:
Lemma 4 for
2lgsoddprm
.
(Contributed by
AV
, 20-Jul-2021)
Ref
Expression
Assertion
2lgsoddprmlem4
⊢
N
∈
ℤ
∧
¬
2
∥
N
→
2
∥
N
2
−
1
8
↔
N
mod
8
∈
1
7
Proof
Step
Hyp
Ref
Expression
1
eqidd
⊢
N
∈
ℤ
∧
¬
2
∥
N
→
N
mod
8
=
N
mod
8
2
2lgsoddprmlem2
⊢
N
∈
ℤ
∧
¬
2
∥
N
∧
N
mod
8
=
N
mod
8
→
2
∥
N
2
−
1
8
↔
2
∥
N
mod
8
2
−
1
8
3
1
2
mpd3an3
⊢
N
∈
ℤ
∧
¬
2
∥
N
→
2
∥
N
2
−
1
8
↔
2
∥
N
mod
8
2
−
1
8
4
2lgsoddprmlem3
⊢
N
∈
ℤ
∧
¬
2
∥
N
∧
N
mod
8
=
N
mod
8
→
2
∥
N
mod
8
2
−
1
8
↔
N
mod
8
∈
1
7
5
1
4
mpd3an3
⊢
N
∈
ℤ
∧
¬
2
∥
N
→
2
∥
N
mod
8
2
−
1
8
↔
N
mod
8
∈
1
7
6
3
5
bitrd
⊢
N
∈
ℤ
∧
¬
2
∥
N
→
2
∥
N
2
−
1
8
↔
N
mod
8
∈
1
7