Metamath Proof Explorer


Theorem 2lgsoddprmlem4

Description: Lemma 4 for 2lgsoddprm . (Contributed by AV, 20-Jul-2021)

Ref Expression
Assertion 2lgsoddprmlem4 N ¬ 2 N 2 N 2 1 8 N mod 8 1 7

Proof

Step Hyp Ref Expression
1 eqidd N ¬ 2 N N mod 8 = N mod 8
2 2lgsoddprmlem2 N ¬ 2 N N mod 8 = N mod 8 2 N 2 1 8 2 N mod 8 2 1 8
3 1 2 mpd3an3 N ¬ 2 N 2 N 2 1 8 2 N mod 8 2 1 8
4 2lgsoddprmlem3 N ¬ 2 N N mod 8 = N mod 8 2 N mod 8 2 1 8 N mod 8 1 7
5 1 4 mpd3an3 N ¬ 2 N 2 N mod 8 2 1 8 N mod 8 1 7
6 3 5 bitrd N ¬ 2 N 2 N 2 1 8 N mod 8 1 7