Step |
Hyp |
Ref |
Expression |
1 |
|
2llnja.l |
|
2 |
|
2llnja.j |
|
3 |
|
2llnja.a |
|
4 |
|
2llnja.n |
|
5 |
|
2llnja.p |
|
6 |
|
eqid |
|
7 |
|
simpl1l |
|
8 |
7
|
hllatd |
|
9 |
|
simpl21 |
|
10 |
|
simpl22 |
|
11 |
6 2 3
|
hlatjcl |
|
12 |
7 9 10 11
|
syl3anc |
|
13 |
|
simpl31 |
|
14 |
|
simpl32 |
|
15 |
6 2 3
|
hlatjcl |
|
16 |
7 13 14 15
|
syl3anc |
|
17 |
6 2
|
latjcl |
|
18 |
8 12 16 17
|
syl3anc |
|
19 |
|
simpl1r |
|
20 |
6 5
|
lplnbase |
|
21 |
19 20
|
syl |
|
22 |
|
simpr1 |
|
23 |
|
simpr2 |
|
24 |
6 1 2
|
latjle12 |
|
25 |
8 12 16 21 24
|
syl13anc |
|
26 |
22 23 25
|
mpbi2and |
|
27 |
6 3
|
atbase |
|
28 |
14 27
|
syl |
|
29 |
6 2
|
latjcl |
|
30 |
8 12 28 29
|
syl3anc |
|
31 |
6 3
|
atbase |
|
32 |
13 31
|
syl |
|
33 |
6 1 2
|
latlej2 |
|
34 |
8 32 28 33
|
syl3anc |
|
35 |
6 1 2
|
latjlej2 |
|
36 |
8 28 16 12 35
|
syl13anc |
|
37 |
34 36
|
mpd |
|
38 |
6 1 8 30 18 21 37 26
|
lattrd |
|
39 |
38
|
3adant3 |
|
40 |
|
simp11l |
|
41 |
|
simp121 |
|
42 |
|
simp122 |
|
43 |
|
simp132 |
|
44 |
|
simp123 |
|
45 |
|
simp23 |
|
46 |
|
simpl3 |
|
47 |
|
simpr |
|
48 |
6 1 2
|
latjle12 |
|
49 |
8 32 28 12 48
|
syl13anc |
|
50 |
49
|
3adant3 |
|
51 |
50
|
adantr |
|
52 |
46 47 51
|
mpbi2and |
|
53 |
|
simpl3 |
|
54 |
1 2 3
|
ps-1 |
|
55 |
7 53 9 10 54
|
syl112anc |
|
56 |
55
|
3adant3 |
|
57 |
56
|
adantr |
|
58 |
52 57
|
mpbid |
|
59 |
58
|
eqcomd |
|
60 |
59
|
ex |
|
61 |
60
|
necon3ad |
|
62 |
45 61
|
mpd |
|
63 |
1 2 3 5
|
lplni2 |
|
64 |
40 41 42 43 44 62 63
|
syl132anc |
|
65 |
|
simp11r |
|
66 |
1 5
|
lplncmp |
|
67 |
40 64 65 66
|
syl3anc |
|
68 |
39 67
|
mpbid |
|
69 |
37
|
3adant3 |
|
70 |
68 69
|
eqbrtrrd |
|
71 |
70
|
3expia |
|
72 |
6 2
|
latjcl |
|
73 |
8 12 32 72
|
syl3anc |
|
74 |
6 1 2
|
latlej1 |
|
75 |
8 32 28 74
|
syl3anc |
|
76 |
6 1 2
|
latjlej2 |
|
77 |
8 32 16 12 76
|
syl13anc |
|
78 |
75 77
|
mpd |
|
79 |
6 1 8 73 18 21 78 26
|
lattrd |
|
80 |
79
|
3adant3 |
|
81 |
|
simp11l |
|
82 |
|
simp121 |
|
83 |
|
simp122 |
|
84 |
|
simp131 |
|
85 |
|
simp123 |
|
86 |
|
simp3 |
|
87 |
1 2 3 5
|
lplni2 |
|
88 |
81 82 83 84 85 86 87
|
syl132anc |
|
89 |
|
simp11r |
|
90 |
1 5
|
lplncmp |
|
91 |
81 88 89 90
|
syl3anc |
|
92 |
80 91
|
mpbid |
|
93 |
78
|
3adant3 |
|
94 |
92 93
|
eqbrtrrd |
|
95 |
94
|
3expia |
|
96 |
71 95
|
pm2.61d |
|
97 |
6 1 8 18 21 26 96
|
latasymd |
|