Metamath Proof Explorer


Theorem 2llnma1b

Description: Generalization of 2llnma1 . (Contributed by NM, 26-Apr-2013)

Ref Expression
Hypotheses 2llnma1b.b B = Base K
2llnma1b.l ˙ = K
2llnma1b.j ˙ = join K
2llnma1b.m ˙ = meet K
2llnma1b.a A = Atoms K
Assertion 2llnma1b K HL X B P A Q A ¬ Q ˙ P ˙ X P ˙ X ˙ P ˙ Q = P

Proof

Step Hyp Ref Expression
1 2llnma1b.b B = Base K
2 2llnma1b.l ˙ = K
3 2llnma1b.j ˙ = join K
4 2llnma1b.m ˙ = meet K
5 2llnma1b.a A = Atoms K
6 hllat K HL K Lat
7 6 3ad2ant1 K HL X B P A Q A ¬ Q ˙ P ˙ X K Lat
8 simp22 K HL X B P A Q A ¬ Q ˙ P ˙ X P A
9 1 5 atbase P A P B
10 8 9 syl K HL X B P A Q A ¬ Q ˙ P ˙ X P B
11 simp21 K HL X B P A Q A ¬ Q ˙ P ˙ X X B
12 1 2 3 latlej1 K Lat P B X B P ˙ P ˙ X
13 7 10 11 12 syl3anc K HL X B P A Q A ¬ Q ˙ P ˙ X P ˙ P ˙ X
14 simp23 K HL X B P A Q A ¬ Q ˙ P ˙ X Q A
15 1 5 atbase Q A Q B
16 14 15 syl K HL X B P A Q A ¬ Q ˙ P ˙ X Q B
17 1 2 3 latlej1 K Lat P B Q B P ˙ P ˙ Q
18 7 10 16 17 syl3anc K HL X B P A Q A ¬ Q ˙ P ˙ X P ˙ P ˙ Q
19 1 3 latjcl K Lat P B X B P ˙ X B
20 7 10 11 19 syl3anc K HL X B P A Q A ¬ Q ˙ P ˙ X P ˙ X B
21 simp1 K HL X B P A Q A ¬ Q ˙ P ˙ X K HL
22 1 3 5 hlatjcl K HL P A Q A P ˙ Q B
23 21 8 14 22 syl3anc K HL X B P A Q A ¬ Q ˙ P ˙ X P ˙ Q B
24 1 2 4 latlem12 K Lat P B P ˙ X B P ˙ Q B P ˙ P ˙ X P ˙ P ˙ Q P ˙ P ˙ X ˙ P ˙ Q
25 7 10 20 23 24 syl13anc K HL X B P A Q A ¬ Q ˙ P ˙ X P ˙ P ˙ X P ˙ P ˙ Q P ˙ P ˙ X ˙ P ˙ Q
26 13 18 25 mpbi2and K HL X B P A Q A ¬ Q ˙ P ˙ X P ˙ P ˙ X ˙ P ˙ Q
27 hlatl K HL K AtLat
28 27 3ad2ant1 K HL X B P A Q A ¬ Q ˙ P ˙ X K AtLat
29 simp3 K HL X B P A Q A ¬ Q ˙ P ˙ X ¬ Q ˙ P ˙ X
30 nbrne2 P ˙ P ˙ X ¬ Q ˙ P ˙ X P Q
31 13 29 30 syl2anc K HL X B P A Q A ¬ Q ˙ P ˙ X P Q
32 1 3 latjcl K Lat P ˙ X B Q B P ˙ X ˙ Q B
33 7 20 16 32 syl3anc K HL X B P A Q A ¬ Q ˙ P ˙ X P ˙ X ˙ Q B
34 1 2 3 latlej1 K Lat P ˙ X B Q B P ˙ X ˙ P ˙ X ˙ Q
35 7 20 16 34 syl3anc K HL X B P A Q A ¬ Q ˙ P ˙ X P ˙ X ˙ P ˙ X ˙ Q
36 1 2 7 10 20 33 13 35 lattrd K HL X B P A Q A ¬ Q ˙ P ˙ X P ˙ P ˙ X ˙ Q
37 1 2 3 4 5 cvrat3 K HL P ˙ X B P A Q A P Q ¬ Q ˙ P ˙ X P ˙ P ˙ X ˙ Q P ˙ X ˙ P ˙ Q A
38 37 3impia K HL P ˙ X B P A Q A P Q ¬ Q ˙ P ˙ X P ˙ P ˙ X ˙ Q P ˙ X ˙ P ˙ Q A
39 21 20 8 14 31 29 36 38 syl133anc K HL X B P A Q A ¬ Q ˙ P ˙ X P ˙ X ˙ P ˙ Q A
40 2 5 atcmp K AtLat P A P ˙ X ˙ P ˙ Q A P ˙ P ˙ X ˙ P ˙ Q P = P ˙ X ˙ P ˙ Q
41 28 8 39 40 syl3anc K HL X B P A Q A ¬ Q ˙ P ˙ X P ˙ P ˙ X ˙ P ˙ Q P = P ˙ X ˙ P ˙ Q
42 26 41 mpbid K HL X B P A Q A ¬ Q ˙ P ˙ X P = P ˙ X ˙ P ˙ Q
43 42 eqcomd K HL X B P A Q A ¬ Q ˙ P ˙ X P ˙ X ˙ P ˙ Q = P