Metamath Proof Explorer


Theorem 2llnma2

Description: Two different intersecting lines (expressed in terms of atoms) meet at their common point (atom). (Contributed by NM, 28-May-2012)

Ref Expression
Hypotheses 2llnm.l ˙ = K
2llnm.j ˙ = join K
2llnm.m ˙ = meet K
2llnm.a A = Atoms K
Assertion 2llnma2 K HL P A Q A R A P Q ¬ R ˙ P ˙ Q R ˙ P ˙ R ˙ Q = R

Proof

Step Hyp Ref Expression
1 2llnm.l ˙ = K
2 2llnm.j ˙ = join K
3 2llnm.m ˙ = meet K
4 2llnm.a A = Atoms K
5 simp1 K HL P A Q A R A P Q ¬ R ˙ P ˙ Q K HL
6 simp21 K HL P A Q A R A P Q ¬ R ˙ P ˙ Q P A
7 simp23 K HL P A Q A R A P Q ¬ R ˙ P ˙ Q R A
8 simp22 K HL P A Q A R A P Q ¬ R ˙ P ˙ Q Q A
9 1 2 4 4atlem0ae K HL P A Q A R A P Q ¬ R ˙ P ˙ Q ¬ Q ˙ P ˙ R
10 1 2 3 4 2llnma1 K HL P A R A Q A ¬ Q ˙ P ˙ R R ˙ P ˙ R ˙ Q = R
11 5 6 7 8 9 10 syl131anc K HL P A Q A R A P Q ¬ R ˙ P ˙ Q R ˙ P ˙ R ˙ Q = R