Metamath Proof Explorer


Theorem 2llnma3r

Description: Two different intersecting lines (expressed in terms of atoms) meet at their common point (atom). (Contributed by NM, 30-Apr-2013)

Ref Expression
Hypotheses 2llnm.l ˙ = K
2llnm.j ˙ = join K
2llnm.m ˙ = meet K
2llnm.a A = Atoms K
Assertion 2llnma3r K HL P A Q A R A P ˙ R Q ˙ R P ˙ R ˙ Q ˙ R = R

Proof

Step Hyp Ref Expression
1 2llnm.l ˙ = K
2 2llnm.j ˙ = join K
3 2llnm.m ˙ = meet K
4 2llnm.a A = Atoms K
5 simp1 K HL P A Q A R A P ˙ R Q ˙ R K HL
6 simp21 K HL P A Q A R A P ˙ R Q ˙ R P A
7 simp23 K HL P A Q A R A P ˙ R Q ˙ R R A
8 2 4 hlatjcom K HL P A R A P ˙ R = R ˙ P
9 5 6 7 8 syl3anc K HL P A Q A R A P ˙ R Q ˙ R P ˙ R = R ˙ P
10 simp22 K HL P A Q A R A P ˙ R Q ˙ R Q A
11 2 4 hlatjcom K HL Q A R A Q ˙ R = R ˙ Q
12 5 10 7 11 syl3anc K HL P A Q A R A P ˙ R Q ˙ R Q ˙ R = R ˙ Q
13 9 12 oveq12d K HL P A Q A R A P ˙ R Q ˙ R P ˙ R ˙ Q ˙ R = R ˙ P ˙ R ˙ Q
14 simpr K HL P A Q A R A P ˙ R Q ˙ R Q = R Q = R
15 14 oveq2d K HL P A Q A R A P ˙ R Q ˙ R Q = R R ˙ Q = R ˙ R
16 simpl1 K HL P A Q A R A P ˙ R Q ˙ R Q = R K HL
17 simpl23 K HL P A Q A R A P ˙ R Q ˙ R Q = R R A
18 2 4 hlatjidm K HL R A R ˙ R = R
19 16 17 18 syl2anc K HL P A Q A R A P ˙ R Q ˙ R Q = R R ˙ R = R
20 15 19 eqtrd K HL P A Q A R A P ˙ R Q ˙ R Q = R R ˙ Q = R
21 20 oveq2d K HL P A Q A R A P ˙ R Q ˙ R Q = R R ˙ P ˙ R ˙ Q = R ˙ P ˙ R
22 1 2 4 hlatlej1 K HL R A P A R ˙ R ˙ P
23 5 7 6 22 syl3anc K HL P A Q A R A P ˙ R Q ˙ R R ˙ R ˙ P
24 hllat K HL K Lat
25 24 3ad2ant1 K HL P A Q A R A P ˙ R Q ˙ R K Lat
26 eqid Base K = Base K
27 26 4 atbase R A R Base K
28 7 27 syl K HL P A Q A R A P ˙ R Q ˙ R R Base K
29 26 2 4 hlatjcl K HL R A P A R ˙ P Base K
30 5 7 6 29 syl3anc K HL P A Q A R A P ˙ R Q ˙ R R ˙ P Base K
31 26 1 3 latleeqm2 K Lat R Base K R ˙ P Base K R ˙ R ˙ P R ˙ P ˙ R = R
32 25 28 30 31 syl3anc K HL P A Q A R A P ˙ R Q ˙ R R ˙ R ˙ P R ˙ P ˙ R = R
33 23 32 mpbid K HL P A Q A R A P ˙ R Q ˙ R R ˙ P ˙ R = R
34 33 adantr K HL P A Q A R A P ˙ R Q ˙ R Q = R R ˙ P ˙ R = R
35 21 34 eqtrd K HL P A Q A R A P ˙ R Q ˙ R Q = R R ˙ P ˙ R ˙ Q = R
36 simpl1 K HL P A Q A R A P ˙ R Q ˙ R Q R K HL
37 simpl21 K HL P A Q A R A P ˙ R Q ˙ R Q R P A
38 simpl23 K HL P A Q A R A P ˙ R Q ˙ R Q R R A
39 simpl22 K HL P A Q A R A P ˙ R Q ˙ R Q R Q A
40 simpl3 K HL P A Q A R A P ˙ R Q ˙ R Q R P ˙ R Q ˙ R
41 1 2 4 hlatlej2 K HL P A R A R ˙ P ˙ R
42 5 6 7 41 syl3anc K HL P A Q A R A P ˙ R Q ˙ R R ˙ P ˙ R
43 26 4 atbase Q A Q Base K
44 10 43 syl K HL P A Q A R A P ˙ R Q ˙ R Q Base K
45 26 2 4 hlatjcl K HL P A R A P ˙ R Base K
46 5 6 7 45 syl3anc K HL P A Q A R A P ˙ R Q ˙ R P ˙ R Base K
47 26 1 2 latjle12 K Lat Q Base K R Base K P ˙ R Base K Q ˙ P ˙ R R ˙ P ˙ R Q ˙ R ˙ P ˙ R
48 25 44 28 46 47 syl13anc K HL P A Q A R A P ˙ R Q ˙ R Q ˙ P ˙ R R ˙ P ˙ R Q ˙ R ˙ P ˙ R
49 48 biimpd K HL P A Q A R A P ˙ R Q ˙ R Q ˙ P ˙ R R ˙ P ˙ R Q ˙ R ˙ P ˙ R
50 42 49 mpan2d K HL P A Q A R A P ˙ R Q ˙ R Q ˙ P ˙ R Q ˙ R ˙ P ˙ R
51 50 adantr K HL P A Q A R A P ˙ R Q ˙ R Q R Q ˙ P ˙ R Q ˙ R ˙ P ˙ R
52 simpr K HL P A Q A R A P ˙ R Q ˙ R Q R Q R
53 1 2 4 ps-1 K HL Q A R A Q R P A R A Q ˙ R ˙ P ˙ R Q ˙ R = P ˙ R
54 36 39 38 52 37 38 53 syl132anc K HL P A Q A R A P ˙ R Q ˙ R Q R Q ˙ R ˙ P ˙ R Q ˙ R = P ˙ R
55 54 biimpd K HL P A Q A R A P ˙ R Q ˙ R Q R Q ˙ R ˙ P ˙ R Q ˙ R = P ˙ R
56 eqcom Q ˙ R = P ˙ R P ˙ R = Q ˙ R
57 55 56 syl6ib K HL P A Q A R A P ˙ R Q ˙ R Q R Q ˙ R ˙ P ˙ R P ˙ R = Q ˙ R
58 51 57 syld K HL P A Q A R A P ˙ R Q ˙ R Q R Q ˙ P ˙ R P ˙ R = Q ˙ R
59 58 necon3ad K HL P A Q A R A P ˙ R Q ˙ R Q R P ˙ R Q ˙ R ¬ Q ˙ P ˙ R
60 40 59 mpd K HL P A Q A R A P ˙ R Q ˙ R Q R ¬ Q ˙ P ˙ R
61 1 2 3 4 2llnma1 K HL P A R A Q A ¬ Q ˙ P ˙ R R ˙ P ˙ R ˙ Q = R
62 36 37 38 39 60 61 syl131anc K HL P A Q A R A P ˙ R Q ˙ R Q R R ˙ P ˙ R ˙ Q = R
63 35 62 pm2.61dane K HL P A Q A R A P ˙ R Q ˙ R R ˙ P ˙ R ˙ Q = R
64 13 63 eqtrd K HL P A Q A R A P ˙ R Q ˙ R P ˙ R ˙ Q ˙ R = R