Step |
Hyp |
Ref |
Expression |
1 |
|
2llnm.l |
|
2 |
|
2llnm.j |
|
3 |
|
2llnm.m |
|
4 |
|
2llnm.a |
|
5 |
|
simp1 |
|
6 |
|
simp21 |
|
7 |
|
simp23 |
|
8 |
2 4
|
hlatjcom |
|
9 |
5 6 7 8
|
syl3anc |
|
10 |
|
simp22 |
|
11 |
2 4
|
hlatjcom |
|
12 |
5 10 7 11
|
syl3anc |
|
13 |
9 12
|
oveq12d |
|
14 |
|
simpr |
|
15 |
14
|
oveq2d |
|
16 |
|
simpl1 |
|
17 |
|
simpl23 |
|
18 |
2 4
|
hlatjidm |
|
19 |
16 17 18
|
syl2anc |
|
20 |
15 19
|
eqtrd |
|
21 |
20
|
oveq2d |
|
22 |
1 2 4
|
hlatlej1 |
|
23 |
5 7 6 22
|
syl3anc |
|
24 |
|
hllat |
|
25 |
24
|
3ad2ant1 |
|
26 |
|
eqid |
|
27 |
26 4
|
atbase |
|
28 |
7 27
|
syl |
|
29 |
26 2 4
|
hlatjcl |
|
30 |
5 7 6 29
|
syl3anc |
|
31 |
26 1 3
|
latleeqm2 |
|
32 |
25 28 30 31
|
syl3anc |
|
33 |
23 32
|
mpbid |
|
34 |
33
|
adantr |
|
35 |
21 34
|
eqtrd |
|
36 |
|
simpl1 |
|
37 |
|
simpl21 |
|
38 |
|
simpl23 |
|
39 |
|
simpl22 |
|
40 |
|
simpl3 |
|
41 |
1 2 4
|
hlatlej2 |
|
42 |
5 6 7 41
|
syl3anc |
|
43 |
26 4
|
atbase |
|
44 |
10 43
|
syl |
|
45 |
26 2 4
|
hlatjcl |
|
46 |
5 6 7 45
|
syl3anc |
|
47 |
26 1 2
|
latjle12 |
|
48 |
25 44 28 46 47
|
syl13anc |
|
49 |
48
|
biimpd |
|
50 |
42 49
|
mpan2d |
|
51 |
50
|
adantr |
|
52 |
|
simpr |
|
53 |
1 2 4
|
ps-1 |
|
54 |
36 39 38 52 37 38 53
|
syl132anc |
|
55 |
54
|
biimpd |
|
56 |
|
eqcom |
|
57 |
55 56
|
syl6ib |
|
58 |
51 57
|
syld |
|
59 |
58
|
necon3ad |
|
60 |
40 59
|
mpd |
|
61 |
1 2 3 4
|
2llnma1 |
|
62 |
36 37 38 39 60 61
|
syl131anc |
|
63 |
35 62
|
pm2.61dane |
|
64 |
13 63
|
eqtrd |
|