| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 2llnmat.m |  | 
						
							| 2 |  | 2llnmat.z |  | 
						
							| 3 |  | 2llnmat.a |  | 
						
							| 4 |  | 2llnmat.n |  | 
						
							| 5 |  | simpl1 |  | 
						
							| 6 |  | hlatl |  | 
						
							| 7 | 5 6 | syl |  | 
						
							| 8 | 5 | hllatd |  | 
						
							| 9 |  | simpl2 |  | 
						
							| 10 |  | eqid |  | 
						
							| 11 | 10 4 | llnbase |  | 
						
							| 12 | 9 11 | syl |  | 
						
							| 13 |  | simpl3 |  | 
						
							| 14 | 10 4 | llnbase |  | 
						
							| 15 | 13 14 | syl |  | 
						
							| 16 | 10 1 | latmcl |  | 
						
							| 17 | 8 12 15 16 | syl3anc |  | 
						
							| 18 |  | simprr |  | 
						
							| 19 |  | eqid |  | 
						
							| 20 | 10 19 2 3 | atlex |  | 
						
							| 21 | 7 17 18 20 | syl3anc |  | 
						
							| 22 |  | simp1rl |  | 
						
							| 23 |  | simp1l |  | 
						
							| 24 | 19 4 | llncmp |  | 
						
							| 25 | 23 24 | syl |  | 
						
							| 26 |  | simp1l1 |  | 
						
							| 27 | 26 | hllatd |  | 
						
							| 28 |  | simp1l2 |  | 
						
							| 29 | 28 11 | syl |  | 
						
							| 30 |  | simp1l3 |  | 
						
							| 31 | 30 14 | syl |  | 
						
							| 32 | 10 19 1 | latleeqm1 |  | 
						
							| 33 | 27 29 31 32 | syl3anc |  | 
						
							| 34 | 25 33 | bitr3d |  | 
						
							| 35 | 34 | necon3bid |  | 
						
							| 36 | 22 35 | mpbid |  | 
						
							| 37 |  | simp3 |  | 
						
							| 38 | 10 19 1 | latmle1 |  | 
						
							| 39 | 27 29 31 38 | syl3anc |  | 
						
							| 40 |  | hlpos |  | 
						
							| 41 | 26 40 | syl |  | 
						
							| 42 | 10 3 | atbase |  | 
						
							| 43 | 42 | 3ad2ant2 |  | 
						
							| 44 | 27 29 31 16 | syl3anc |  | 
						
							| 45 |  | simp2 |  | 
						
							| 46 | 10 19 27 43 44 29 37 39 | lattrd |  | 
						
							| 47 |  | eqid |  | 
						
							| 48 | 19 47 3 4 | atcvrlln2 |  | 
						
							| 49 | 26 45 28 46 48 | syl31anc |  | 
						
							| 50 | 10 19 47 | cvrnbtwn4 |  | 
						
							| 51 | 41 43 29 44 49 50 | syl131anc |  | 
						
							| 52 | 37 39 51 | mpbi2and |  | 
						
							| 53 |  | neor |  | 
						
							| 54 | 52 53 | sylib |  | 
						
							| 55 | 54 | necon1d |  | 
						
							| 56 | 36 55 | mpd |  | 
						
							| 57 | 56 | 3exp |  | 
						
							| 58 | 57 | reximdvai |  | 
						
							| 59 | 21 58 | mpd |  | 
						
							| 60 |  | risset |  | 
						
							| 61 | 59 60 | sylibr |  |