Metamath Proof Explorer


Theorem 2llnne2N

Description: Condition implying that two intersecting lines are different. (Contributed by NM, 13-Jun-2012) (New usage is discouraged.)

Ref Expression
Hypotheses 2lnne.l ˙ = K
2lnne.j ˙ = join K
2lnne.a A = Atoms K
Assertion 2llnne2N K HL P A R A ¬ P ˙ R ˙ Q R ˙ P R ˙ Q

Proof

Step Hyp Ref Expression
1 2lnne.l ˙ = K
2 2lnne.j ˙ = join K
3 2lnne.a A = Atoms K
4 simpl K HL P A R A K HL
5 simprr K HL P A R A R A
6 simprl K HL P A R A P A
7 1 2 3 hlatlej2 K HL R A P A P ˙ R ˙ P
8 4 5 6 7 syl3anc K HL P A R A P ˙ R ˙ P
9 breq2 R ˙ P = R ˙ Q P ˙ R ˙ P P ˙ R ˙ Q
10 8 9 syl5ibcom K HL P A R A R ˙ P = R ˙ Q P ˙ R ˙ Q
11 10 necon3bd K HL P A R A ¬ P ˙ R ˙ Q R ˙ P R ˙ Q
12 11 3impia K HL P A R A ¬ P ˙ R ˙ Q R ˙ P R ˙ Q