Metamath Proof Explorer


Theorem 2llnneN

Description: Condition implying that two intersecting lines are different. (Contributed by NM, 29-May-2012) (New usage is discouraged.)

Ref Expression
Hypotheses 2lnne.l ˙ = K
2lnne.j ˙ = join K
2lnne.a A = Atoms K
Assertion 2llnneN K HL P A Q A R A P Q ¬ R ˙ P ˙ Q R ˙ P R ˙ Q

Proof

Step Hyp Ref Expression
1 2lnne.l ˙ = K
2 2lnne.j ˙ = join K
3 2lnne.a A = Atoms K
4 simp1 K HL P A Q A R A P Q ¬ R ˙ P ˙ Q K HL
5 simp21 K HL P A Q A R A P Q ¬ R ˙ P ˙ Q P A
6 simp23 K HL P A Q A R A P Q ¬ R ˙ P ˙ Q R A
7 simp21 K HL P A Q A R A P Q P A
8 simp23 K HL P A Q A R A P Q R A
9 simp22 K HL P A Q A R A P Q Q A
10 7 8 9 3jca K HL P A Q A R A P Q P A R A Q A
11 1 2 3 hlatexch2 K HL P A R A Q A P Q P ˙ R ˙ Q R ˙ P ˙ Q
12 10 11 syld3an2 K HL P A Q A R A P Q P ˙ R ˙ Q R ˙ P ˙ Q
13 12 con3d K HL P A Q A R A P Q ¬ R ˙ P ˙ Q ¬ P ˙ R ˙ Q
14 13 3exp K HL P A Q A R A P Q ¬ R ˙ P ˙ Q ¬ P ˙ R ˙ Q
15 14 imp4a K HL P A Q A R A P Q ¬ R ˙ P ˙ Q ¬ P ˙ R ˙ Q
16 15 3imp K HL P A Q A R A P Q ¬ R ˙ P ˙ Q ¬ P ˙ R ˙ Q
17 1 2 3 2llnne2N K HL P A R A ¬ P ˙ R ˙ Q R ˙ P R ˙ Q
18 4 5 6 16 17 syl121anc K HL P A Q A R A P Q ¬ R ˙ P ˙ Q R ˙ P R ˙ Q