Metamath Proof Explorer


Theorem 2logb9irr

Description: Example for logbgcd1irr . The logarithm of nine to base two is irrational. (Contributed by AV, 29-Dec-2022)

Ref Expression
Assertion 2logb9irr log 2 9

Proof

Step Hyp Ref Expression
1 2z 2
2 9nn 9
3 2 nnzi 9
4 2re 2
5 9re 9
6 2lt9 2 < 9
7 4 5 6 ltleii 2 9
8 eluz2 9 2 2 9 2 9
9 1 3 7 8 mpbir3an 9 2
10 uzid 2 2 2
11 1 10 ax-mp 2 2
12 sq3 3 2 = 9
13 12 eqcomi 9 = 3 2
14 13 oveq1i 9 gcd 2 = 3 2 gcd 2
15 2lt3 2 < 3
16 4 15 gtneii 3 2
17 3prm 3
18 2prm 2
19 prmrp 3 2 3 gcd 2 = 1 3 2
20 17 18 19 mp2an 3 gcd 2 = 1 3 2
21 16 20 mpbir 3 gcd 2 = 1
22 3z 3
23 2nn0 2 0
24 rpexp1i 3 2 2 0 3 gcd 2 = 1 3 2 gcd 2 = 1
25 22 1 23 24 mp3an 3 gcd 2 = 1 3 2 gcd 2 = 1
26 21 25 ax-mp 3 2 gcd 2 = 1
27 14 26 eqtri 9 gcd 2 = 1
28 logbgcd1irr 9 2 2 2 9 gcd 2 = 1 log 2 9
29 9 11 27 28 mp3an log 2 9