Metamath Proof Explorer


Theorem 2logb9irrALT

Description: Alternate proof of 2logb9irr : The logarithm of nine to base two is irrational. (Contributed by AV, 31-Dec-2022) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion 2logb9irrALT log 2 9

Proof

Step Hyp Ref Expression
1 sq3 3 2 = 9
2 1 eqcomi 9 = 3 2
3 2 oveq2i log 2 9 = log 2 3 2
4 2cn 2
5 2ne0 2 0
6 1ne2 1 2
7 6 necomi 2 1
8 eldifpr 2 0 1 2 2 0 2 1
9 4 5 7 8 mpbir3an 2 0 1
10 3rp 3 +
11 2z 2
12 relogbzexp 2 0 1 3 + 2 log 2 3 2 = 2 log 2 3
13 9 10 11 12 mp3an log 2 3 2 = 2 log 2 3
14 3 13 eqtri log 2 9 = 2 log 2 3
15 3cn 3
16 3ne0 3 0
17 eldifsn 3 0 3 3 0
18 15 16 17 mpbir2an 3 0
19 logbcl 2 0 1 3 0 log 2 3
20 9 18 19 mp2an log 2 3
21 4 20 mulcomi 2 log 2 3 = log 2 3 2
22 2logb3irr log 2 3
23 zq 2 2
24 11 23 ax-mp 2
25 irrmul log 2 3 2 2 0 log 2 3 2
26 22 24 5 25 mp3an log 2 3 2
27 21 26 eqeltri 2 log 2 3
28 14 27 eqeltri log 2 9