| Step |
Hyp |
Ref |
Expression |
| 1 |
|
2lplnj.l |
|
| 2 |
|
2lplnj.j |
|
| 3 |
|
2lplnj.p |
|
| 4 |
|
2lplnj.v |
|
| 5 |
|
eqid |
|
| 6 |
|
eqid |
|
| 7 |
5 1 2 6 3
|
islpln2 |
|
| 8 |
|
simpr |
|
| 9 |
7 8
|
biimtrdi |
|
| 10 |
5 1 2 6 3
|
islpln2 |
|
| 11 |
|
simpr |
|
| 12 |
10 11
|
biimtrdi |
|
| 13 |
9 12
|
anim12d |
|
| 14 |
13
|
imp |
|
| 15 |
14
|
3adantr3 |
|
| 16 |
15
|
3adant3 |
|
| 17 |
|
simpl33 |
|
| 18 |
17
|
3ad2ant1 |
|
| 19 |
|
simp33 |
|
| 20 |
18 19
|
oveq12d |
|
| 21 |
|
simp11 |
|
| 22 |
|
simp123 |
|
| 23 |
21 22
|
jca |
|
| 24 |
23
|
adantr |
|
| 25 |
24
|
3ad2ant1 |
|
| 26 |
|
simp2l |
|
| 27 |
|
simp2rl |
|
| 28 |
|
simp2rr |
|
| 29 |
26 27 28
|
3jca |
|
| 30 |
29
|
adantr |
|
| 31 |
30
|
3ad2ant1 |
|
| 32 |
|
simpl31 |
|
| 33 |
32
|
3ad2ant1 |
|
| 34 |
|
simpl32 |
|
| 35 |
34
|
3ad2ant1 |
|
| 36 |
33 35
|
jca |
|
| 37 |
|
simp1r |
|
| 38 |
|
simp2l |
|
| 39 |
|
simp2r |
|
| 40 |
37 38 39
|
3jca |
|
| 41 |
|
simp31 |
|
| 42 |
|
simp32 |
|
| 43 |
41 42
|
jca |
|
| 44 |
|
simpl13 |
|
| 45 |
44
|
3ad2ant1 |
|
| 46 |
|
breq1 |
|
| 47 |
|
neeq1 |
|
| 48 |
46 47
|
3anbi13d |
|
| 49 |
|
breq1 |
|
| 50 |
|
neeq2 |
|
| 51 |
49 50
|
3anbi23d |
|
| 52 |
48 51
|
sylan9bb |
|
| 53 |
18 19 52
|
syl2anc |
|
| 54 |
45 53
|
mpbid |
|
| 55 |
1 2 6 4
|
2lplnja |
|
| 56 |
25 31 36 40 43 54 55
|
syl321anc |
|
| 57 |
20 56
|
eqtrd |
|
| 58 |
57
|
3exp |
|
| 59 |
58
|
rexlimdvv |
|
| 60 |
59
|
rexlimdva |
|
| 61 |
60
|
3exp |
|
| 62 |
61
|
expdimp |
|
| 63 |
62
|
rexlimdvv |
|
| 64 |
63
|
rexlimdva |
|
| 65 |
64
|
impd |
|
| 66 |
16 65
|
mpd |
|