Step |
Hyp |
Ref |
Expression |
1 |
|
2lplnj.l |
|
2 |
|
2lplnj.j |
|
3 |
|
2lplnj.p |
|
4 |
|
2lplnj.v |
|
5 |
|
eqid |
|
6 |
|
eqid |
|
7 |
5 1 2 6 3
|
islpln2 |
|
8 |
|
simpr |
|
9 |
7 8
|
syl6bi |
|
10 |
5 1 2 6 3
|
islpln2 |
|
11 |
|
simpr |
|
12 |
10 11
|
syl6bi |
|
13 |
9 12
|
anim12d |
|
14 |
13
|
imp |
|
15 |
14
|
3adantr3 |
|
16 |
15
|
3adant3 |
|
17 |
|
simpl33 |
|
18 |
17
|
3ad2ant1 |
|
19 |
|
simp33 |
|
20 |
18 19
|
oveq12d |
|
21 |
|
simp11 |
|
22 |
|
simp123 |
|
23 |
21 22
|
jca |
|
24 |
23
|
adantr |
|
25 |
24
|
3ad2ant1 |
|
26 |
|
simp2l |
|
27 |
|
simp2rl |
|
28 |
|
simp2rr |
|
29 |
26 27 28
|
3jca |
|
30 |
29
|
adantr |
|
31 |
30
|
3ad2ant1 |
|
32 |
|
simpl31 |
|
33 |
32
|
3ad2ant1 |
|
34 |
|
simpl32 |
|
35 |
34
|
3ad2ant1 |
|
36 |
33 35
|
jca |
|
37 |
|
simp1r |
|
38 |
|
simp2l |
|
39 |
|
simp2r |
|
40 |
37 38 39
|
3jca |
|
41 |
|
simp31 |
|
42 |
|
simp32 |
|
43 |
41 42
|
jca |
|
44 |
|
simpl13 |
|
45 |
44
|
3ad2ant1 |
|
46 |
|
breq1 |
|
47 |
|
neeq1 |
|
48 |
46 47
|
3anbi13d |
|
49 |
|
breq1 |
|
50 |
|
neeq2 |
|
51 |
49 50
|
3anbi23d |
|
52 |
48 51
|
sylan9bb |
|
53 |
18 19 52
|
syl2anc |
|
54 |
45 53
|
mpbid |
|
55 |
1 2 6 4
|
2lplnja |
|
56 |
25 31 36 40 43 54 55
|
syl321anc |
|
57 |
20 56
|
eqtrd |
|
58 |
57
|
3exp |
|
59 |
58
|
rexlimdvv |
|
60 |
59
|
rexlimdva |
|
61 |
60
|
3exp |
|
62 |
61
|
expdimp |
|
63 |
62
|
rexlimdvv |
|
64 |
63
|
rexlimdva |
|
65 |
64
|
impd |
|
66 |
16 65
|
mpd |
|