Metamath Proof Explorer


Theorem 2lplnm2N

Description: The meet of two different lattice planes in a lattice volume is a lattice line. (Contributed by NM, 12-Jul-2012) (New usage is discouraged.)

Ref Expression
Hypotheses 2lplnm2.l ˙=K
2lplnm2.m ˙=meetK
2lplnm2.a N=LLinesK
2lplnm2.p P=LPlanesK
2lplnm2.v V=LVolsK
Assertion 2lplnm2N KHLXPYPWVX˙WY˙WXYX˙YN

Proof

Step Hyp Ref Expression
1 2lplnm2.l ˙=K
2 2lplnm2.m ˙=meetK
3 2lplnm2.a N=LLinesK
4 2lplnm2.p P=LPlanesK
5 2lplnm2.v V=LVolsK
6 simp22 KHLXPYPWVX˙WY˙WXYYP
7 simp1 KHLXPYPWVX˙WY˙WXYKHL
8 hllat KHLKLat
9 8 3ad2ant1 KHLXPYPWVX˙WY˙WXYKLat
10 simp21 KHLXPYPWVX˙WY˙WXYXP
11 eqid BaseK=BaseK
12 11 4 lplnbase XPXBaseK
13 10 12 syl KHLXPYPWVX˙WY˙WXYXBaseK
14 11 4 lplnbase YPYBaseK
15 6 14 syl KHLXPYPWVX˙WY˙WXYYBaseK
16 11 2 latmcl KLatXBaseKYBaseKX˙YBaseK
17 9 13 15 16 syl3anc KHLXPYPWVX˙WY˙WXYX˙YBaseK
18 eqid joinK=joinK
19 1 18 4 5 2lplnj KHLXPYPWVX˙WY˙WXYXjoinKY=W
20 simp23 KHLXPYPWVX˙WY˙WXYWV
21 19 20 eqeltrd KHLXPYPWVX˙WY˙WXYXjoinKYV
22 11 1 18 latlej1 KLatXBaseKYBaseKX˙XjoinKY
23 9 13 15 22 syl3anc KHLXPYPWVX˙WY˙WXYX˙XjoinKY
24 eqid K=K
25 1 24 4 5 lplncvrlvol2 KHLXPXjoinKYVX˙XjoinKYXKXjoinKY
26 7 10 21 23 25 syl31anc KHLXPYPWVX˙WY˙WXYXKXjoinKY
27 11 18 2 24 cvrexch KHLXBaseKYBaseKX˙YKYXKXjoinKY
28 7 13 15 27 syl3anc KHLXPYPWVX˙WY˙WXYX˙YKYXKXjoinKY
29 26 28 mpbird KHLXPYPWVX˙WY˙WXYX˙YKY
30 11 24 3 4 llncvrlpln KHLX˙YBaseKYBaseKX˙YKYX˙YNYP
31 7 17 15 29 30 syl31anc KHLXPYPWVX˙WY˙WXYX˙YNYP
32 6 31 mpbird KHLXPYPWVX˙WY˙WXYX˙YN