Metamath Proof Explorer


Theorem 2lt4

Description: 2 is less than 4. (Contributed by Mario Carneiro, 15-Sep-2013)

Ref Expression
Assertion 2lt4 2 < 4

Proof

Step Hyp Ref Expression
1 2lt3 2 < 3
2 3lt4 3 < 4
3 2re 2
4 3re 3
5 4re 4
6 3 4 5 lttri 2 < 3 3 < 4 2 < 4
7 1 2 6 mp2an 2 < 4