Metamath Proof Explorer


Theorem 2lt5

Description: 2 is less than 5. (Contributed by Mario Carneiro, 15-Sep-2013)

Ref Expression
Assertion 2lt5 2 < 5

Proof

Step Hyp Ref Expression
1 2lt4 2 < 4
2 4lt5 4 < 5
3 2re 2
4 4re 4
5 5re 5
6 3 4 5 lttri 2 < 4 4 < 5 2 < 5
7 1 2 6 mp2an 2 < 5