Metamath Proof Explorer


Theorem 2moex

Description: Double quantification with "at most one". Usage of this theorem is discouraged because it depends on ax-13 . Use the weaker 2moexv when possible. (Contributed by NM, 3-Dec-2001) (New usage is discouraged.)

Ref Expression
Assertion 2moex * x y φ y * x φ

Proof

Step Hyp Ref Expression
1 nfe1 y y φ
2 1 nfmo y * x y φ
3 19.8a φ y φ
4 3 moimi * x y φ * x φ
5 2 4 alrimi * x y φ y * x φ