Metamath Proof Explorer


Theorem 2mos

Description: Double "there exists at most one", using implicit substitution. (Contributed by NM, 10-Feb-2005) (Proof shortened by Wolf Lammen, 21-May-2025)

Ref Expression
Hypothesis 2mos.1 x=zy=wφψ
Assertion 2mos zwxyφx=zy=wxyzwφψx=zy=w

Proof

Step Hyp Ref Expression
1 2mos.1 x=zy=wφψ
2 2mo zwxyφx=zy=wxyzwφzxwyφx=zy=w
3 1 2sbievw zxwyφψ
4 3 anbi2i φzxwyφφψ
5 4 imbi1i φzxwyφx=zy=wφψx=zy=w
6 5 2albii zwφzxwyφx=zy=wzwφψx=zy=w
7 6 2albii xyzwφzxwyφx=zy=wxyzwφψx=zy=w
8 2 7 bitri zwxyφx=zy=wxyzwφψx=zy=w