Metamath Proof Explorer


Theorem 2mos

Description: Double "there exists at most one", using implicit substitution. (Contributed by NM, 10-Feb-2005)

Ref Expression
Hypothesis 2mos.1 x=zy=wφψ
Assertion 2mos zwxyφx=zy=wxyzwφψx=zy=w

Proof

Step Hyp Ref Expression
1 2mos.1 x=zy=wφψ
2 2mo zwxyφx=zy=wxyzwφzxwyφx=zy=w
3 nfv yx=z
4 3 sbrim wyx=zφx=zwyφ
5 1 expcom y=wx=zφψ
6 5 pm5.74d y=wx=zφx=zψ
7 6 sbievw wyx=zφx=zψ
8 4 7 bitr3i x=zwyφx=zψ
9 8 pm5.74ri x=zwyφψ
10 9 sbievw zxwyφψ
11 10 anbi2i φzxwyφφψ
12 11 imbi1i φzxwyφx=zy=wφψx=zy=w
13 12 2albii zwφzxwyφx=zy=wzwφψx=zy=w
14 13 2albii xyzwφzxwyφx=zy=wxyzwφψx=zy=w
15 2 14 bitri zwxyφx=zy=wxyzwφψx=zy=w