Metamath Proof Explorer


Theorem 2mulicn

Description: ( 2 x. _i ) e. CC . (Contributed by David A. Wheeler, 8-Dec-2018)

Ref Expression
Assertion 2mulicn 2 i

Proof

Step Hyp Ref Expression
1 2cn 2
2 ax-icn i
3 1 2 mulcli 2 i