Metamath Proof Explorer


Theorem 2muline0

Description: ( 2 x. _i ) =/= 0 . (Contributed by David A. Wheeler, 8-Dec-2018)

Ref Expression
Assertion 2muline0 2 i 0

Proof

Step Hyp Ref Expression
1 2cn 2
2 ax-icn i
3 2ne0 2 0
4 ine0 i 0
5 1 2 3 4 mulne0i 2 i 0