Metamath Proof Explorer


Theorem 2nalexn

Description: Part of theorem *11.5 in WhiteheadRussell p. 164. (Contributed by Andrew Salmon, 24-May-2011)

Ref Expression
Assertion 2nalexn ¬ x y φ x y ¬ φ

Proof

Step Hyp Ref Expression
1 df-ex x y ¬ φ ¬ x ¬ y ¬ φ
2 alex y φ ¬ y ¬ φ
3 2 albii x y φ x ¬ y ¬ φ
4 1 3 xchbinxr x y ¬ φ ¬ x y φ
5 4 bicomi ¬ x y φ x y ¬ φ