Metamath Proof Explorer


Theorem 2ndcctbss

Description: If a topology is second-countable, every base has a countable subset which is a base. Exercise 16B2 in Willard. (Contributed by Jeff Hankins, 28-Jan-2010) (Proof shortened by Mario Carneiro, 21-Mar-2015)

Ref Expression
Hypotheses 2ndcctbss.1 J = topGen B
2ndcctbss.2 S = u v | u c v c w B u w w v
Assertion 2ndcctbss B TopBases J 2 nd 𝜔 b TopBases b ω b B J = topGen b

Proof

Step Hyp Ref Expression
1 2ndcctbss.1 J = topGen B
2 2ndcctbss.2 S = u v | u c v c w B u w w v
3 simpr B TopBases J 2 nd 𝜔 J 2 nd 𝜔
4 is2ndc J 2 nd 𝜔 c TopBases c ω topGen c = J
5 3 4 sylib B TopBases J 2 nd 𝜔 c TopBases c ω topGen c = J
6 vex c V
7 6 6 xpex c × c V
8 3simpa u c v c w B u w w v u c v c
9 8 ssopab2i u v | u c v c w B u w w v u v | u c v c
10 df-xp c × c = u v | u c v c
11 9 2 10 3sstr4i S c × c
12 ssdomg c × c V S c × c S c × c
13 7 11 12 mp2 S c × c
14 6 xpdom1 c ω c × c ω × c
15 omex ω V
16 15 xpdom2 c ω ω × c ω × ω
17 domtr c × c ω × c ω × c ω × ω c × c ω × ω
18 14 16 17 syl2anc c ω c × c ω × ω
19 xpomen ω × ω ω
20 domentr c × c ω × ω ω × ω ω c × c ω
21 18 19 20 sylancl c ω c × c ω
22 21 adantr c ω topGen c = J c × c ω
23 22 ad2antll B TopBases J 2 nd 𝜔 c TopBases c ω topGen c = J c × c ω
24 domtr S c × c c × c ω S ω
25 13 23 24 sylancr B TopBases J 2 nd 𝜔 c TopBases c ω topGen c = J S ω
26 2 relopabiv Rel S
27 simpr B TopBases J 2 nd 𝜔 c TopBases c ω topGen c = J x S x S
28 1st2nd Rel S x S x = 1 st x 2 nd x
29 26 27 28 sylancr B TopBases J 2 nd 𝜔 c TopBases c ω topGen c = J x S x = 1 st x 2 nd x
30 29 27 eqeltrrd B TopBases J 2 nd 𝜔 c TopBases c ω topGen c = J x S 1 st x 2 nd x S
31 df-br 1 st x S 2 nd x 1 st x 2 nd x S
32 fvex 1 st x V
33 fvex 2 nd x V
34 simpl u = 1 st x v = 2 nd x u = 1 st x
35 34 eleq1d u = 1 st x v = 2 nd x u c 1 st x c
36 simpr u = 1 st x v = 2 nd x v = 2 nd x
37 36 eleq1d u = 1 st x v = 2 nd x v c 2 nd x c
38 sseq1 u = 1 st x u w 1 st x w
39 sseq2 v = 2 nd x w v w 2 nd x
40 38 39 bi2anan9 u = 1 st x v = 2 nd x u w w v 1 st x w w 2 nd x
41 40 rexbidv u = 1 st x v = 2 nd x w B u w w v w B 1 st x w w 2 nd x
42 35 37 41 3anbi123d u = 1 st x v = 2 nd x u c v c w B u w w v 1 st x c 2 nd x c w B 1 st x w w 2 nd x
43 32 33 42 2 braba 1 st x S 2 nd x 1 st x c 2 nd x c w B 1 st x w w 2 nd x
44 31 43 bitr3i 1 st x 2 nd x S 1 st x c 2 nd x c w B 1 st x w w 2 nd x
45 44 simp3bi 1 st x 2 nd x S w B 1 st x w w 2 nd x
46 30 45 syl B TopBases J 2 nd 𝜔 c TopBases c ω topGen c = J x S w B 1 st x w w 2 nd x
47 fvi B TopBases I B = B
48 47 ad3antrrr B TopBases J 2 nd 𝜔 c TopBases c ω topGen c = J x S I B = B
49 46 48 rexeqtrrdv B TopBases J 2 nd 𝜔 c TopBases c ω topGen c = J x S w I B 1 st x w w 2 nd x
50 49 ralrimiva B TopBases J 2 nd 𝜔 c TopBases c ω topGen c = J x S w I B 1 st x w w 2 nd x
51 fvex I B V
52 sseq2 w = f x 1 st x w 1 st x f x
53 sseq1 w = f x w 2 nd x f x 2 nd x
54 52 53 anbi12d w = f x 1 st x w w 2 nd x 1 st x f x f x 2 nd x
55 51 54 axcc4dom S ω x S w I B 1 st x w w 2 nd x f f : S I B x S 1 st x f x f x 2 nd x
56 25 50 55 syl2anc B TopBases J 2 nd 𝜔 c TopBases c ω topGen c = J f f : S I B x S 1 st x f x f x 2 nd x
57 47 ad2antrr B TopBases J 2 nd 𝜔 c TopBases c ω topGen c = J I B = B
58 57 feq3d B TopBases J 2 nd 𝜔 c TopBases c ω topGen c = J f : S I B f : S B
59 58 anbi1d B TopBases J 2 nd 𝜔 c TopBases c ω topGen c = J f : S I B x S 1 st x f x f x 2 nd x f : S B x S 1 st x f x f x 2 nd x
60 2ndctop J 2 nd 𝜔 J Top
61 60 adantl B TopBases J 2 nd 𝜔 J Top
62 61 ad2antrr B TopBases J 2 nd 𝜔 c TopBases c ω topGen c = J f : S B x S 1 st x f x f x 2 nd x J Top
63 frn f : S B ran f B
64 63 ad2antrl B TopBases J 2 nd 𝜔 c TopBases c ω topGen c = J f : S B x S 1 st x f x f x 2 nd x ran f B
65 bastg B TopBases B topGen B
66 65 ad3antrrr B TopBases J 2 nd 𝜔 c TopBases c ω topGen c = J f : S B x S 1 st x f x f x 2 nd x B topGen B
67 66 1 sseqtrrdi B TopBases J 2 nd 𝜔 c TopBases c ω topGen c = J f : S B x S 1 st x f x f x 2 nd x B J
68 64 67 sstrd B TopBases J 2 nd 𝜔 c TopBases c ω topGen c = J f : S B x S 1 st x f x f x 2 nd x ran f J
69 simprrl B TopBases J 2 nd 𝜔 c TopBases c ω topGen c = J f : S B x S 1 st x f x f x 2 nd x o J t o o J
70 simprr c TopBases c ω topGen c = J topGen c = J
71 70 ad2antlr B TopBases J 2 nd 𝜔 c TopBases c ω topGen c = J f : S B x S 1 st x f x f x 2 nd x o J t o topGen c = J
72 69 71 eleqtrrd B TopBases J 2 nd 𝜔 c TopBases c ω topGen c = J f : S B x S 1 st x f x f x 2 nd x o J t o o topGen c
73 simprrr B TopBases J 2 nd 𝜔 c TopBases c ω topGen c = J f : S B x S 1 st x f x f x 2 nd x o J t o t o
74 tg2 o topGen c t o d c t d d o
75 72 73 74 syl2anc B TopBases J 2 nd 𝜔 c TopBases c ω topGen c = J f : S B x S 1 st x f x f x 2 nd x o J t o d c t d d o
76 bastg c TopBases c topGen c
77 76 ad2antrl B TopBases J 2 nd 𝜔 c TopBases c ω topGen c = J c topGen c
78 77 ad2antrr B TopBases J 2 nd 𝜔 c TopBases c ω topGen c = J f : S B x S 1 st x f x f x 2 nd x o J t o d c t d d o c topGen c
79 1 eqeq2i topGen c = J topGen c = topGen B
80 79 biimpi topGen c = J topGen c = topGen B
81 80 adantl c ω topGen c = J topGen c = topGen B
82 81 ad2antll B TopBases J 2 nd 𝜔 c TopBases c ω topGen c = J topGen c = topGen B
83 82 ad2antrr B TopBases J 2 nd 𝜔 c TopBases c ω topGen c = J f : S B x S 1 st x f x f x 2 nd x o J t o d c t d d o topGen c = topGen B
84 78 83 sseqtrd B TopBases J 2 nd 𝜔 c TopBases c ω topGen c = J f : S B x S 1 st x f x f x 2 nd x o J t o d c t d d o c topGen B
85 simprl B TopBases J 2 nd 𝜔 c TopBases c ω topGen c = J f : S B x S 1 st x f x f x 2 nd x o J t o d c t d d o d c
86 84 85 sseldd B TopBases J 2 nd 𝜔 c TopBases c ω topGen c = J f : S B x S 1 st x f x f x 2 nd x o J t o d c t d d o d topGen B
87 simprrl B TopBases J 2 nd 𝜔 c TopBases c ω topGen c = J f : S B x S 1 st x f x f x 2 nd x o J t o d c t d d o t d
88 tg2 d topGen B t d m B t m m d
89 86 87 88 syl2anc B TopBases J 2 nd 𝜔 c TopBases c ω topGen c = J f : S B x S 1 st x f x f x 2 nd x o J t o d c t d d o m B t m m d
90 65 ad3antrrr B TopBases J 2 nd 𝜔 c TopBases c ω topGen c = J f : S B x S 1 st x f x f x 2 nd x o J t o B topGen B
91 90 ad2antrr B TopBases J 2 nd 𝜔 c TopBases c ω topGen c = J f : S B x S 1 st x f x f x 2 nd x o J t o d c t d d o m B t m m d B topGen B
92 71 ad2antrr B TopBases J 2 nd 𝜔 c TopBases c ω topGen c = J f : S B x S 1 st x f x f x 2 nd x o J t o d c t d d o m B t m m d topGen c = J
93 92 1 eqtr2di B TopBases J 2 nd 𝜔 c TopBases c ω topGen c = J f : S B x S 1 st x f x f x 2 nd x o J t o d c t d d o m B t m m d topGen B = topGen c
94 91 93 sseqtrd B TopBases J 2 nd 𝜔 c TopBases c ω topGen c = J f : S B x S 1 st x f x f x 2 nd x o J t o d c t d d o m B t m m d B topGen c
95 simprl B TopBases J 2 nd 𝜔 c TopBases c ω topGen c = J f : S B x S 1 st x f x f x 2 nd x o J t o d c t d d o m B t m m d m B
96 94 95 sseldd B TopBases J 2 nd 𝜔 c TopBases c ω topGen c = J f : S B x S 1 st x f x f x 2 nd x o J t o d c t d d o m B t m m d m topGen c
97 simprrl B TopBases J 2 nd 𝜔 c TopBases c ω topGen c = J f : S B x S 1 st x f x f x 2 nd x o J t o d c t d d o m B t m m d t m
98 tg2 m topGen c t m n c t n n m
99 96 97 98 syl2anc B TopBases J 2 nd 𝜔 c TopBases c ω topGen c = J f : S B x S 1 st x f x f x 2 nd x o J t o d c t d d o m B t m m d n c t n n m
100 ffn f : S B f Fn S
101 100 ad2antrr f : S B x S 1 st x f x f x 2 nd x o J t o f Fn S
102 101 ad2antlr B TopBases J 2 nd 𝜔 c TopBases c ω topGen c = J f : S B x S 1 st x f x f x 2 nd x o J t o d c t d d o f Fn S
103 102 ad2antrr B TopBases J 2 nd 𝜔 c TopBases c ω topGen c = J f : S B x S 1 st x f x f x 2 nd x o J t o d c t d d o m B t m m d n c t n n m f Fn S
104 simprl B TopBases J 2 nd 𝜔 c TopBases c ω topGen c = J f : S B x S 1 st x f x f x 2 nd x o J t o d c t d d o m B t m m d n c t n n m n c
105 85 ad2antrr B TopBases J 2 nd 𝜔 c TopBases c ω topGen c = J f : S B x S 1 st x f x f x 2 nd x o J t o d c t d d o m B t m m d n c t n n m d c
106 simplrl B TopBases J 2 nd 𝜔 c TopBases c ω topGen c = J f : S B x S 1 st x f x f x 2 nd x o J t o d c t d d o m B t m m d n c t n n m m B
107 simprrr B TopBases J 2 nd 𝜔 c TopBases c ω topGen c = J f : S B x S 1 st x f x f x 2 nd x o J t o d c t d d o m B t m m d n c t n n m n m
108 simprr m B t m m d m d
109 108 ad2antlr B TopBases J 2 nd 𝜔 c TopBases c ω topGen c = J f : S B x S 1 st x f x f x 2 nd x o J t o d c t d d o m B t m m d n c t n n m m d
110 sseq2 w = m n w n m
111 sseq1 w = m w d m d
112 110 111 anbi12d w = m n w w d n m m d
113 112 rspcev m B n m m d w B n w w d
114 106 107 109 113 syl12anc B TopBases J 2 nd 𝜔 c TopBases c ω topGen c = J f : S B x S 1 st x f x f x 2 nd x o J t o d c t d d o m B t m m d n c t n n m w B n w w d
115 df-br n S d n d S
116 vex n V
117 vex d V
118 simpl u = n v = d u = n
119 118 eleq1d u = n v = d u c n c
120 simpr u = n v = d v = d
121 120 eleq1d u = n v = d v c d c
122 sseq1 u = n u w n w
123 sseq2 v = d w v w d
124 122 123 bi2anan9 u = n v = d u w w v n w w d
125 124 rexbidv u = n v = d w B u w w v w B n w w d
126 119 121 125 3anbi123d u = n v = d u c v c w B u w w v n c d c w B n w w d
127 116 117 126 2 braba n S d n c d c w B n w w d
128 115 127 bitr3i n d S n c d c w B n w w d
129 104 105 114 128 syl3anbrc B TopBases J 2 nd 𝜔 c TopBases c ω topGen c = J f : S B x S 1 st x f x f x 2 nd x o J t o d c t d d o m B t m m d n c t n n m n d S
130 fnfvelrn f Fn S n d S f n d ran f
131 103 129 130 syl2anc B TopBases J 2 nd 𝜔 c TopBases c ω topGen c = J f : S B x S 1 st x f x f x 2 nd x o J t o d c t d d o m B t m m d n c t n n m f n d ran f
132 simprl d c t d d o m B t m m d n c t n n m n c
133 simplll d c t d d o m B t m m d n c t n n m d c
134 simplrl d c t d d o m B t m m d n c t n n m m B
135 simprrr d c t d d o m B t m m d n c t n n m n m
136 108 ad2antlr d c t d d o m B t m m d n c t n n m m d
137 134 135 136 113 syl12anc d c t d d o m B t m m d n c t n n m w B n w w d
138 132 133 137 128 syl3anbrc d c t d d o m B t m m d n c t n n m n d S
139 fveq2 x = n d 1 st x = 1 st n d
140 fveq2 x = n d f x = f n d
141 139 140 sseq12d x = n d 1 st x f x 1 st n d f n d
142 fveq2 x = n d 2 nd x = 2 nd n d
143 140 142 sseq12d x = n d f x 2 nd x f n d 2 nd n d
144 141 143 anbi12d x = n d 1 st x f x f x 2 nd x 1 st n d f n d f n d 2 nd n d
145 144 rspcv n d S x S 1 st x f x f x 2 nd x 1 st n d f n d f n d 2 nd n d
146 138 145 syl d c t d d o m B t m m d n c t n n m x S 1 st x f x f x 2 nd x 1 st n d f n d f n d 2 nd n d
147 116 117 op1st 1 st n d = n
148 147 sseq1i 1 st n d f n d n f n d
149 116 117 op2nd 2 nd n d = d
150 149 sseq2i f n d 2 nd n d f n d d
151 148 150 anbi12i 1 st n d f n d f n d 2 nd n d n f n d f n d d
152 simprl d c t d d o m B t m m d n c t n n m n f n d f n d d n f n d
153 simprl n c t n n m t n
154 153 ad2antlr d c t d d o m B t m m d n c t n n m n f n d f n d d t n
155 152 154 sseldd d c t d d o m B t m m d n c t n n m n f n d f n d d t f n d
156 simprr d c t d d o m B t m m d n c t n n m n f n d f n d d f n d d
157 simplrr d c t d d o m B t m m d d o
158 157 ad2antrr d c t d d o m B t m m d n c t n n m n f n d f n d d d o
159 156 158 sstrd d c t d d o m B t m m d n c t n n m n f n d f n d d f n d o
160 155 159 jca d c t d d o m B t m m d n c t n n m n f n d f n d d t f n d f n d o
161 160 ex d c t d d o m B t m m d n c t n n m n f n d f n d d t f n d f n d o
162 151 161 biimtrid d c t d d o m B t m m d n c t n n m 1 st n d f n d f n d 2 nd n d t f n d f n d o
163 146 162 syldc x S 1 st x f x f x 2 nd x d c t d d o m B t m m d n c t n n m t f n d f n d o
164 163 exp4c x S 1 st x f x f x 2 nd x d c t d d o m B t m m d n c t n n m t f n d f n d o
165 164 ad2antlr f : S B x S 1 st x f x f x 2 nd x o J t o d c t d d o m B t m m d n c t n n m t f n d f n d o
166 165 adantl B TopBases J 2 nd 𝜔 c TopBases c ω topGen c = J f : S B x S 1 st x f x f x 2 nd x o J t o d c t d d o m B t m m d n c t n n m t f n d f n d o
167 166 imp41 B TopBases J 2 nd 𝜔 c TopBases c ω topGen c = J f : S B x S 1 st x f x f x 2 nd x o J t o d c t d d o m B t m m d n c t n n m t f n d f n d o
168 eleq2 b = f n d t b t f n d
169 sseq1 b = f n d b o f n d o
170 168 169 anbi12d b = f n d t b b o t f n d f n d o
171 170 rspcev f n d ran f t f n d f n d o b ran f t b b o
172 131 167 171 syl2anc B TopBases J 2 nd 𝜔 c TopBases c ω topGen c = J f : S B x S 1 st x f x f x 2 nd x o J t o d c t d d o m B t m m d n c t n n m b ran f t b b o
173 99 172 rexlimddv B TopBases J 2 nd 𝜔 c TopBases c ω topGen c = J f : S B x S 1 st x f x f x 2 nd x o J t o d c t d d o m B t m m d b ran f t b b o
174 89 173 rexlimddv B TopBases J 2 nd 𝜔 c TopBases c ω topGen c = J f : S B x S 1 st x f x f x 2 nd x o J t o d c t d d o b ran f t b b o
175 75 174 rexlimddv B TopBases J 2 nd 𝜔 c TopBases c ω topGen c = J f : S B x S 1 st x f x f x 2 nd x o J t o b ran f t b b o
176 175 expr B TopBases J 2 nd 𝜔 c TopBases c ω topGen c = J f : S B x S 1 st x f x f x 2 nd x o J t o b ran f t b b o
177 176 ralrimivv B TopBases J 2 nd 𝜔 c TopBases c ω topGen c = J f : S B x S 1 st x f x f x 2 nd x o J t o b ran f t b b o
178 basgen2 J Top ran f J o J t o b ran f t b b o topGen ran f = J
179 62 68 177 178 syl3anc B TopBases J 2 nd 𝜔 c TopBases c ω topGen c = J f : S B x S 1 st x f x f x 2 nd x topGen ran f = J
180 179 62 eqeltrd B TopBases J 2 nd 𝜔 c TopBases c ω topGen c = J f : S B x S 1 st x f x f x 2 nd x topGen ran f Top
181 tgclb ran f TopBases topGen ran f Top
182 180 181 sylibr B TopBases J 2 nd 𝜔 c TopBases c ω topGen c = J f : S B x S 1 st x f x f x 2 nd x ran f TopBases
183 omelon ω On
184 25 adantr B TopBases J 2 nd 𝜔 c TopBases c ω topGen c = J f : S B x S 1 st x f x f x 2 nd x S ω
185 ondomen ω On S ω S dom card
186 183 184 185 sylancr B TopBases J 2 nd 𝜔 c TopBases c ω topGen c = J f : S B x S 1 st x f x f x 2 nd x S dom card
187 100 ad2antrl B TopBases J 2 nd 𝜔 c TopBases c ω topGen c = J f : S B x S 1 st x f x f x 2 nd x f Fn S
188 dffn4 f Fn S f : S onto ran f
189 187 188 sylib B TopBases J 2 nd 𝜔 c TopBases c ω topGen c = J f : S B x S 1 st x f x f x 2 nd x f : S onto ran f
190 fodomnum S dom card f : S onto ran f ran f S
191 186 189 190 sylc B TopBases J 2 nd 𝜔 c TopBases c ω topGen c = J f : S B x S 1 st x f x f x 2 nd x ran f S
192 domtr ran f S S ω ran f ω
193 191 184 192 syl2anc B TopBases J 2 nd 𝜔 c TopBases c ω topGen c = J f : S B x S 1 st x f x f x 2 nd x ran f ω
194 179 eqcomd B TopBases J 2 nd 𝜔 c TopBases c ω topGen c = J f : S B x S 1 st x f x f x 2 nd x J = topGen ran f
195 breq1 b = ran f b ω ran f ω
196 sseq1 b = ran f b B ran f B
197 fveq2 b = ran f topGen b = topGen ran f
198 197 eqeq2d b = ran f J = topGen b J = topGen ran f
199 195 196 198 3anbi123d b = ran f b ω b B J = topGen b ran f ω ran f B J = topGen ran f
200 199 rspcev ran f TopBases ran f ω ran f B J = topGen ran f b TopBases b ω b B J = topGen b
201 182 193 64 194 200 syl13anc B TopBases J 2 nd 𝜔 c TopBases c ω topGen c = J f : S B x S 1 st x f x f x 2 nd x b TopBases b ω b B J = topGen b
202 201 ex B TopBases J 2 nd 𝜔 c TopBases c ω topGen c = J f : S B x S 1 st x f x f x 2 nd x b TopBases b ω b B J = topGen b
203 59 202 sylbid B TopBases J 2 nd 𝜔 c TopBases c ω topGen c = J f : S I B x S 1 st x f x f x 2 nd x b TopBases b ω b B J = topGen b
204 203 exlimdv B TopBases J 2 nd 𝜔 c TopBases c ω topGen c = J f f : S I B x S 1 st x f x f x 2 nd x b TopBases b ω b B J = topGen b
205 56 204 mpd B TopBases J 2 nd 𝜔 c TopBases c ω topGen c = J b TopBases b ω b B J = topGen b
206 5 205 rexlimddv B TopBases J 2 nd 𝜔 b TopBases b ω b B J = topGen b