| Step |
Hyp |
Ref |
Expression |
| 1 |
|
is2ndc |
|
| 2 |
|
omex |
|
| 3 |
2
|
brdom |
|
| 4 |
|
ssrab2 |
|
| 5 |
|
f1f |
|
| 6 |
5
|
frnd |
|
| 7 |
6
|
adantl |
|
| 8 |
4 7
|
sstrid |
|
| 9 |
8
|
adantr |
|
| 10 |
|
eldifsn |
|
| 11 |
|
n0 |
|
| 12 |
|
tg2 |
|
| 13 |
|
omsson |
|
| 14 |
8 13
|
sstrdi |
|
| 15 |
14
|
ad2antrr |
|
| 16 |
|
f1fn |
|
| 17 |
16
|
ad3antlr |
|
| 18 |
|
simprl |
|
| 19 |
|
fnfvelrn |
|
| 20 |
17 18 19
|
syl2anc |
|
| 21 |
|
f1f1orn |
|
| 22 |
21
|
ad3antlr |
|
| 23 |
|
f1ocnvfv1 |
|
| 24 |
22 18 23
|
syl2anc |
|
| 25 |
|
simprrr |
|
| 26 |
|
velpw |
|
| 27 |
25 26
|
sylibr |
|
| 28 |
|
simprrl |
|
| 29 |
28
|
ne0d |
|
| 30 |
|
eldifsn |
|
| 31 |
27 29 30
|
sylanbrc |
|
| 32 |
24 31
|
eqeltrd |
|
| 33 |
|
fveq2 |
|
| 34 |
33
|
eleq1d |
|
| 35 |
34
|
rspcev |
|
| 36 |
20 32 35
|
syl2anc |
|
| 37 |
|
rabn0 |
|
| 38 |
36 37
|
sylibr |
|
| 39 |
|
onint |
|
| 40 |
15 38 39
|
syl2anc |
|
| 41 |
40
|
rexlimdvaa |
|
| 42 |
12 41
|
syl5 |
|
| 43 |
42
|
expdimp |
|
| 44 |
43
|
exlimdv |
|
| 45 |
11 44
|
biimtrid |
|
| 46 |
45
|
expimpd |
|
| 47 |
10 46
|
biimtrid |
|
| 48 |
47
|
impr |
|
| 49 |
9 48
|
sseldd |
|
| 50 |
49
|
expr |
|
| 51 |
50
|
ralimdva |
|
| 52 |
51
|
imp |
|
| 53 |
52
|
adantrr |
|
| 54 |
|
eqid |
|
| 55 |
54
|
fmpt |
|
| 56 |
53 55
|
sylib |
|
| 57 |
|
neeq1 |
|
| 58 |
|
neeq1 |
|
| 59 |
|
1n0 |
|
| 60 |
57 58 59
|
elimhyp |
|
| 61 |
|
n0 |
|
| 62 |
60 61
|
mpbi |
|
| 63 |
|
19.29r |
|
| 64 |
62 63
|
mpan |
|
| 65 |
|
eleq1 |
|
| 66 |
48 65
|
syl5ibrcom |
|
| 67 |
66
|
imp |
|
| 68 |
|
fveq2 |
|
| 69 |
68
|
eleq1d |
|
| 70 |
69
|
elrab |
|
| 71 |
70
|
simprbi |
|
| 72 |
67 71
|
syl |
|
| 73 |
|
eldifsn |
|
| 74 |
72 73
|
sylib |
|
| 75 |
74
|
simprd |
|
| 76 |
75
|
iftrued |
|
| 77 |
74
|
simpld |
|
| 78 |
77
|
elpwid |
|
| 79 |
76 78
|
eqsstrd |
|
| 80 |
79
|
sseld |
|
| 81 |
80
|
exp31 |
|
| 82 |
81
|
com23 |
|
| 83 |
82
|
exp4a |
|
| 84 |
83
|
com25 |
|
| 85 |
84
|
imp31 |
|
| 86 |
85
|
ralimdva |
|
| 87 |
86
|
imp |
|
| 88 |
87
|
an32s |
|
| 89 |
|
rmoim |
|
| 90 |
88 89
|
syl |
|
| 91 |
90
|
expimpd |
|
| 92 |
91
|
exlimdv |
|
| 93 |
64 92
|
syl5 |
|
| 94 |
93
|
impr |
|
| 95 |
|
nfcv |
|
| 96 |
|
nfmpt1 |
|
| 97 |
|
nfcv |
|
| 98 |
95 96 97
|
nfbr |
|
| 99 |
|
nfv |
|
| 100 |
|
breq1 |
|
| 101 |
|
df-br |
|
| 102 |
|
df-mpt |
|
| 103 |
102
|
eleq2i |
|
| 104 |
|
opabidw |
|
| 105 |
101 103 104
|
3bitri |
|
| 106 |
100 105
|
bitrdi |
|
| 107 |
98 99 106
|
cbvmow |
|
| 108 |
|
df-rmo |
|
| 109 |
107 108
|
bitr4i |
|
| 110 |
94 109
|
sylibr |
|
| 111 |
110
|
alrimiv |
|
| 112 |
|
dff12 |
|
| 113 |
56 111 112
|
sylanbrc |
|
| 114 |
|
f1domg |
|
| 115 |
2 113 114
|
mpsyl |
|
| 116 |
115
|
ex |
|
| 117 |
|
difeq1 |
|
| 118 |
117
|
eleq2d |
|
| 119 |
118
|
ralbidv |
|
| 120 |
119
|
anbi1d |
|
| 121 |
120
|
imbi1d |
|
| 122 |
116 121
|
syl5ibcom |
|
| 123 |
122
|
ex |
|
| 124 |
123
|
exlimdv |
|
| 125 |
3 124
|
biimtrid |
|
| 126 |
125
|
impd |
|
| 127 |
126
|
rexlimiv |
|
| 128 |
1 127
|
sylbi |
|
| 129 |
128
|
3impib |
|