Metamath Proof Explorer


Theorem 2ndcredom

Description: A second-countable space has at most the cardinality of the continuum. (Contributed by Mario Carneiro, 9-Apr-2015)

Ref Expression
Assertion 2ndcredom J 2 nd 𝜔 J

Proof

Step Hyp Ref Expression
1 is2ndc J 2 nd 𝜔 x TopBases x ω topGen x = J
2 tgdom x TopBases topGen x 𝒫 x
3 simpr x TopBases x ω x ω
4 nnenom ω
5 4 ensymi ω
6 domentr x ω ω x
7 3 5 6 sylancl x TopBases x ω x
8 pwdom x 𝒫 x 𝒫
9 7 8 syl x TopBases x ω 𝒫 x 𝒫
10 rpnnen 𝒫
11 10 ensymi 𝒫
12 domentr 𝒫 x 𝒫 𝒫 𝒫 x
13 9 11 12 sylancl x TopBases x ω 𝒫 x
14 domtr topGen x 𝒫 x 𝒫 x topGen x
15 2 13 14 syl2an2r x TopBases x ω topGen x
16 breq1 topGen x = J topGen x J
17 15 16 syl5ibcom x TopBases x ω topGen x = J J
18 17 expimpd x TopBases x ω topGen x = J J
19 18 rexlimiv x TopBases x ω topGen x = J J
20 1 19 sylbi J 2 nd 𝜔 J