Metamath Proof Explorer


Theorem 2ndcrest

Description: A subspace of a second-countable space is second-countable. (Contributed by Mario Carneiro, 21-Mar-2015)

Ref Expression
Assertion 2ndcrest J 2 nd 𝜔 A V J 𝑡 A 2 nd 𝜔

Proof

Step Hyp Ref Expression
1 is2ndc J 2 nd 𝜔 x TopBases x ω topGen x = J
2 simplr A V x TopBases x ω x TopBases
3 simpll A V x TopBases x ω A V
4 tgrest x TopBases A V topGen x 𝑡 A = topGen x 𝑡 A
5 2 3 4 syl2anc A V x TopBases x ω topGen x 𝑡 A = topGen x 𝑡 A
6 restbas x TopBases x 𝑡 A TopBases
7 6 ad2antlr A V x TopBases x ω x 𝑡 A TopBases
8 restval x TopBases A V x 𝑡 A = ran y x y A
9 2 3 8 syl2anc A V x TopBases x ω x 𝑡 A = ran y x y A
10 1stcrestlem x ω ran y x y A ω
11 10 adantl A V x TopBases x ω ran y x y A ω
12 9 11 eqbrtrd A V x TopBases x ω x 𝑡 A ω
13 2ndci x 𝑡 A TopBases x 𝑡 A ω topGen x 𝑡 A 2 nd 𝜔
14 7 12 13 syl2anc A V x TopBases x ω topGen x 𝑡 A 2 nd 𝜔
15 5 14 eqeltrrd A V x TopBases x ω topGen x 𝑡 A 2 nd 𝜔
16 oveq1 topGen x = J topGen x 𝑡 A = J 𝑡 A
17 16 eleq1d topGen x = J topGen x 𝑡 A 2 nd 𝜔 J 𝑡 A 2 nd 𝜔
18 15 17 syl5ibcom A V x TopBases x ω topGen x = J J 𝑡 A 2 nd 𝜔
19 18 expimpd A V x TopBases x ω topGen x = J J 𝑡 A 2 nd 𝜔
20 19 rexlimdva A V x TopBases x ω topGen x = J J 𝑡 A 2 nd 𝜔
21 1 20 syl5bi A V J 2 nd 𝜔 J 𝑡 A 2 nd 𝜔
22 21 impcom J 2 nd 𝜔 A V J 𝑡 A 2 nd 𝜔