| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 2ndcsep.1 |  | 
						
							| 2 |  | is2ndc |  | 
						
							| 3 |  | vex |  | 
						
							| 4 |  | difss |  | 
						
							| 5 |  | ssdomg |  | 
						
							| 6 | 3 4 5 | mp2 |  | 
						
							| 7 |  | simpr |  | 
						
							| 8 |  | domtr |  | 
						
							| 9 | 6 7 8 | sylancr |  | 
						
							| 10 |  | eldifsn |  | 
						
							| 11 |  | n0 |  | 
						
							| 12 |  | elunii |  | 
						
							| 13 |  | simpl |  | 
						
							| 14 | 12 13 | jca |  | 
						
							| 15 | 14 | expcom |  | 
						
							| 16 | 15 | eximdv |  | 
						
							| 17 | 16 | imp |  | 
						
							| 18 |  | df-rex |  | 
						
							| 19 | 17 18 | sylibr |  | 
						
							| 20 | 11 19 | sylan2b |  | 
						
							| 21 | 10 20 | sylbi |  | 
						
							| 22 | 21 | rgen |  | 
						
							| 23 |  | vuniex |  | 
						
							| 24 |  | eleq1 |  | 
						
							| 25 | 23 24 | axcc4dom |  | 
						
							| 26 | 9 22 25 | sylancl |  | 
						
							| 27 |  | frn |  | 
						
							| 28 | 27 | ad2antrl |  | 
						
							| 29 |  | vex |  | 
						
							| 30 | 29 | rnex |  | 
						
							| 31 | 30 | elpw |  | 
						
							| 32 | 28 31 | sylibr |  | 
						
							| 33 |  | omelon |  | 
						
							| 34 | 7 | adantr |  | 
						
							| 35 |  | ondomen |  | 
						
							| 36 | 33 34 35 | sylancr |  | 
						
							| 37 |  | ssnum |  | 
						
							| 38 | 36 4 37 | sylancl |  | 
						
							| 39 |  | ffn |  | 
						
							| 40 | 39 | ad2antrl |  | 
						
							| 41 |  | dffn4 |  | 
						
							| 42 | 40 41 | sylib |  | 
						
							| 43 |  | fodomnum |  | 
						
							| 44 | 38 42 43 | sylc |  | 
						
							| 45 | 9 | adantr |  | 
						
							| 46 |  | domtr |  | 
						
							| 47 | 44 45 46 | syl2anc |  | 
						
							| 48 |  | tgcl |  | 
						
							| 49 | 48 | ad2antrr |  | 
						
							| 50 |  | unitg |  | 
						
							| 51 | 50 | elv |  | 
						
							| 52 | 51 | eqcomi |  | 
						
							| 53 | 52 | clsss3 |  | 
						
							| 54 | 49 28 53 | syl2anc |  | 
						
							| 55 |  | ne0i |  | 
						
							| 56 | 55 | anim2i |  | 
						
							| 57 | 56 10 | sylibr |  | 
						
							| 58 |  | fnfvelrn |  | 
						
							| 59 | 39 58 | sylan |  | 
						
							| 60 |  | inelcm |  | 
						
							| 61 | 60 | expcom |  | 
						
							| 62 | 59 61 | syl |  | 
						
							| 63 | 62 | ex |  | 
						
							| 64 | 63 | a2d |  | 
						
							| 65 | 57 64 | syl7 |  | 
						
							| 66 | 65 | exp4a |  | 
						
							| 67 | 66 | ralimdv2 |  | 
						
							| 68 | 67 | imp |  | 
						
							| 69 | 68 | ad2antlr |  | 
						
							| 70 |  | eqidd |  | 
						
							| 71 | 52 | a1i |  | 
						
							| 72 |  | simplll |  | 
						
							| 73 | 28 | adantr |  | 
						
							| 74 |  | simpr |  | 
						
							| 75 | 70 71 72 73 74 | elcls3 |  | 
						
							| 76 | 69 75 | mpbird |  | 
						
							| 77 | 54 76 | eqelssd |  | 
						
							| 78 |  | breq1 |  | 
						
							| 79 |  | fveqeq2 |  | 
						
							| 80 | 78 79 | anbi12d |  | 
						
							| 81 | 80 | rspcev |  | 
						
							| 82 | 32 47 77 81 | syl12anc |  | 
						
							| 83 | 26 82 | exlimddv |  | 
						
							| 84 |  | unieq |  | 
						
							| 85 | 84 52 1 | 3eqtr4g |  | 
						
							| 86 | 85 | pweqd |  | 
						
							| 87 |  | fveq2 |  | 
						
							| 88 | 87 | fveq1d |  | 
						
							| 89 | 88 85 | eqeq12d |  | 
						
							| 90 | 89 | anbi2d |  | 
						
							| 91 | 86 90 | rexeqbidv |  | 
						
							| 92 | 83 91 | syl5ibcom |  | 
						
							| 93 | 92 | impr |  | 
						
							| 94 | 93 | rexlimiva |  | 
						
							| 95 | 2 94 | sylbi |  |