Metamath Proof Explorer


Theorem 2ndctop

Description: A second-countable topology is a topology. (Contributed by Jeff Hankins, 17-Jan-2010) (Revised by Mario Carneiro, 21-Mar-2015)

Ref Expression
Assertion 2ndctop J 2 nd 𝜔 J Top

Proof

Step Hyp Ref Expression
1 is2ndc J 2 nd 𝜔 x TopBases x ω topGen x = J
2 simprr x TopBases x ω topGen x = J topGen x = J
3 tgcl x TopBases topGen x Top
4 3 adantr x TopBases x ω topGen x = J topGen x Top
5 2 4 eqeltrrd x TopBases x ω topGen x = J J Top
6 5 rexlimiva x TopBases x ω topGen x = J J Top
7 1 6 sylbi J 2 nd 𝜔 J Top