Metamath Proof Explorer


Theorem 2ndresdju

Description: The 2nd function restricted to a disjoint union is injective. (Contributed by Thierry Arnoux, 23-Jun-2024)

Ref Expression
Hypotheses 2ndresdju.u U = x X x × C
2ndresdju.a φ A V
2ndresdju.x φ X W
2ndresdju.1 φ Disj x X C
2ndresdju.2 φ x X C = A
Assertion 2ndresdju φ 2 nd U : U 1-1 A

Proof

Step Hyp Ref Expression
1 2ndresdju.u U = x X x × C
2 2ndresdju.a φ A V
3 2ndresdju.x φ X W
4 2ndresdju.1 φ Disj x X C
5 2ndresdju.2 φ x X C = A
6 fo2nd 2 nd : V onto V
7 fofn 2 nd : V onto V 2 nd Fn V
8 6 7 mp1i φ 2 nd Fn V
9 ssv U V
10 9 a1i φ U V
11 8 10 fnssresd φ 2 nd U Fn U
12 simpr φ u U u U
13 12 fvresd φ u U 2 nd U u = 2 nd u
14 djussxp2 x X x × C X × x X C
15 5 xpeq2d φ X × x X C = X × A
16 14 15 sseqtrid φ x X x × C X × A
17 1 16 eqsstrid φ U X × A
18 17 sselda φ u U u X × A
19 xp2nd u X × A 2 nd u A
20 18 19 syl φ u U 2 nd u A
21 13 20 eqeltrd φ u U 2 nd U u A
22 21 ralrimiva φ u U 2 nd U u A
23 ffnfv 2 nd U : U A 2 nd U Fn U u U 2 nd U u A
24 11 22 23 sylanbrc φ 2 nd U : U A
25 nfv x φ
26 nfiu1 _ x x X x × C
27 1 26 nfcxfr _ x U
28 27 nfcri x u U
29 25 28 nfan x φ u U
30 27 nfcri x v U
31 29 30 nfan x φ u U v U
32 nfcv _ x 2 nd
33 32 27 nfres _ x 2 nd U
34 nfcv _ x u
35 33 34 nffv _ x 2 nd U u
36 nfcv _ x v
37 33 36 nffv _ x 2 nd U v
38 35 37 nfeq x 2 nd U u = 2 nd U v
39 31 38 nfan x φ u U v U 2 nd U u = 2 nd U v
40 nfv x u = v
41 1 eleq2i u U u x X x × C
42 eliunxp u x X x × C x c u = x c x X c C
43 41 42 sylbb u U x c u = x c x X c C
44 43 ad3antlr φ u U v U 2 nd U u = 2 nd U v x c u = x c x X c C
45 1 eleq2i v U v x X x × C
46 eliunxp v x X x × C x d v = x d x X d C
47 45 46 bitri v U x d v = x d x X d C
48 nfv y d v = x d x X d C
49 nfv x v = y d
50 nfv x y X
51 nfcsb1v _ x y / x C
52 51 nfcri x d y / x C
53 50 52 nfan x y X d y / x C
54 49 53 nfan x v = y d y X d y / x C
55 54 nfex x d v = y d y X d y / x C
56 opeq1 x = y x d = y d
57 56 eqeq2d x = y v = x d v = y d
58 eleq1w x = y x X y X
59 csbeq1a x = y C = y / x C
60 59 eleq2d x = y d C d y / x C
61 58 60 anbi12d x = y x X d C y X d y / x C
62 57 61 anbi12d x = y v = x d x X d C v = y d y X d y / x C
63 62 exbidv x = y d v = x d x X d C d v = y d y X d y / x C
64 48 55 63 cbvexv1 x d v = x d x X d C y d v = y d y X d y / x C
65 47 64 sylbb v U y d v = y d y X d y / x C
66 65 ad5antlr φ u U v U 2 nd U u = 2 nd U v u = x c x X c C y d v = y d y X d y / x C
67 4 ad9antr φ u U v U 2 nd U u = 2 nd U v u = x c x X c C v = y d y X d y / x C Disj x X C
68 simp-5r φ u U v U 2 nd U u = 2 nd U v u = x c x X c C v = y d y X d y / x C x X
69 simplr φ u U v U 2 nd U u = 2 nd U v u = x c x X c C v = y d y X d y / x C y X
70 simp-4r φ u U v U 2 nd U u = 2 nd U v u = x c x X c C v = y d y X d y / x C c C
71 simp-7r φ u U v U 2 nd U u = 2 nd U v u = x c x X c C v = y d y X d y / x C 2 nd U u = 2 nd U v
72 simp-9r φ u U v U 2 nd U u = 2 nd U v u = x c x X c C v = y d y X d y / x C u U
73 72 fvresd φ u U v U 2 nd U u = 2 nd U v u = x c x X c C v = y d y X d y / x C 2 nd U u = 2 nd u
74 simp-6r φ u U v U 2 nd U u = 2 nd U v u = x c x X c C v = y d y X d y / x C u = x c
75 74 fveq2d φ u U v U 2 nd U u = 2 nd U v u = x c x X c C v = y d y X d y / x C 2 nd u = 2 nd x c
76 vex x V
77 vex c V
78 76 77 op2nd 2 nd x c = c
79 75 78 eqtrdi φ u U v U 2 nd U u = 2 nd U v u = x c x X c C v = y d y X d y / x C 2 nd u = c
80 73 79 eqtrd φ u U v U 2 nd U u = 2 nd U v u = x c x X c C v = y d y X d y / x C 2 nd U u = c
81 simp-8r φ u U v U 2 nd U u = 2 nd U v u = x c x X c C v = y d y X d y / x C v U
82 81 fvresd φ u U v U 2 nd U u = 2 nd U v u = x c x X c C v = y d y X d y / x C 2 nd U v = 2 nd v
83 simpllr φ u U v U 2 nd U u = 2 nd U v u = x c x X c C v = y d y X d y / x C v = y d
84 83 fveq2d φ u U v U 2 nd U u = 2 nd U v u = x c x X c C v = y d y X d y / x C 2 nd v = 2 nd y d
85 vex y V
86 vex d V
87 85 86 op2nd 2 nd y d = d
88 84 87 eqtrdi φ u U v U 2 nd U u = 2 nd U v u = x c x X c C v = y d y X d y / x C 2 nd v = d
89 82 88 eqtrd φ u U v U 2 nd U u = 2 nd U v u = x c x X c C v = y d y X d y / x C 2 nd U v = d
90 71 80 89 3eqtr3d φ u U v U 2 nd U u = 2 nd U v u = x c x X c C v = y d y X d y / x C c = d
91 simpr φ u U v U 2 nd U u = 2 nd U v u = x c x X c C v = y d y X d y / x C d y / x C
92 90 91 eqeltrd φ u U v U 2 nd U u = 2 nd U v u = x c x X c C v = y d y X d y / x C c y / x C
93 51 59 disjif Disj x X C x X y X c C c y / x C x = y
94 67 68 69 70 92 93 syl122anc φ u U v U 2 nd U u = 2 nd U v u = x c x X c C v = y d y X d y / x C x = y
95 94 90 opeq12d φ u U v U 2 nd U u = 2 nd U v u = x c x X c C v = y d y X d y / x C x c = y d
96 95 74 83 3eqtr4d φ u U v U 2 nd U u = 2 nd U v u = x c x X c C v = y d y X d y / x C u = v
97 96 anasss φ u U v U 2 nd U u = 2 nd U v u = x c x X c C v = y d y X d y / x C u = v
98 97 expl φ u U v U 2 nd U u = 2 nd U v u = x c x X c C v = y d y X d y / x C u = v
99 98 exlimdvv φ u U v U 2 nd U u = 2 nd U v u = x c x X c C y d v = y d y X d y / x C u = v
100 66 99 mpd φ u U v U 2 nd U u = 2 nd U v u = x c x X c C u = v
101 100 anasss φ u U v U 2 nd U u = 2 nd U v u = x c x X c C u = v
102 101 expl φ u U v U 2 nd U u = 2 nd U v u = x c x X c C u = v
103 102 exlimdv φ u U v U 2 nd U u = 2 nd U v c u = x c x X c C u = v
104 39 40 44 103 exlimimdd φ u U v U 2 nd U u = 2 nd U v u = v
105 104 ex φ u U v U 2 nd U u = 2 nd U v u = v
106 105 anasss φ u U v U 2 nd U u = 2 nd U v u = v
107 106 ralrimivva φ u U v U 2 nd U u = 2 nd U v u = v
108 dff13 2 nd U : U 1-1 A 2 nd U : U A u U v U 2 nd U u = 2 nd U v u = v
109 24 107 108 sylanbrc φ 2 nd U : U 1-1 A