Metamath Proof Explorer


Theorem 2nexaln

Description: Theorem *11.25 in WhiteheadRussell p. 160. (Contributed by Andrew Salmon, 24-May-2011)

Ref Expression
Assertion 2nexaln ¬ x y φ x y ¬ φ

Proof

Step Hyp Ref Expression
1 2exnaln x y φ ¬ x y ¬ φ
2 1 bicomi ¬ x y ¬ φ x y φ
3 2 con1bii ¬ x y φ x y ¬ φ