Metamath Proof Explorer


Theorem 2nn

Description: 2 is a positive integer. (Contributed by NM, 20-Aug-2001)

Ref Expression
Assertion 2nn 2

Proof

Step Hyp Ref Expression
1 df-2 2 = 1 + 1
2 1nn 1
3 peano2nn 1 1 + 1
4 2 3 ax-mp 1 + 1
5 1 4 eqeltri 2