Step |
Hyp |
Ref |
Expression |
1 |
|
2nn0ind.1 |
|
2 |
|
2nn0ind.2 |
|
3 |
|
2nn0ind.3 |
|
4 |
|
2nn0ind.4 |
|
5 |
|
2nn0ind.5 |
|
6 |
|
2nn0ind.6 |
|
7 |
|
2nn0ind.7 |
|
8 |
|
2nn0ind.8 |
|
9 |
|
2nn0ind.9 |
|
10 |
|
nn0p1nn |
|
11 |
|
oveq1 |
|
12 |
11
|
sbceq1d |
|
13 |
|
dfsbcq |
|
14 |
12 13
|
anbi12d |
|
15 |
|
oveq1 |
|
16 |
15
|
sbceq1d |
|
17 |
|
dfsbcq |
|
18 |
16 17
|
anbi12d |
|
19 |
|
oveq1 |
|
20 |
19
|
sbceq1d |
|
21 |
|
dfsbcq |
|
22 |
20 21
|
anbi12d |
|
23 |
|
oveq1 |
|
24 |
23
|
sbceq1d |
|
25 |
|
dfsbcq |
|
26 |
24 25
|
anbi12d |
|
27 |
|
ovex |
|
28 |
|
1m1e0 |
|
29 |
28
|
eqeq2i |
|
30 |
29 4
|
sylbi |
|
31 |
27 30
|
sbcie |
|
32 |
1 31
|
mpbir |
|
33 |
|
1ex |
|
34 |
33 5
|
sbcie |
|
35 |
2 34
|
mpbir |
|
36 |
32 35
|
pm3.2i |
|
37 |
|
simprr |
|
38 |
|
nncn |
|
39 |
|
ax-1cn |
|
40 |
|
pncan |
|
41 |
38 39 40
|
sylancl |
|
42 |
41
|
adantr |
|
43 |
42
|
sbceq1d |
|
44 |
37 43
|
mpbird |
|
45 |
|
ovex |
|
46 |
45 6
|
sbcie |
|
47 |
|
vex |
|
48 |
47 7
|
sbcie |
|
49 |
46 48
|
anbi12i |
|
50 |
|
ovex |
|
51 |
50 8
|
sbcie |
|
52 |
3 49 51
|
3imtr4g |
|
53 |
52
|
imp |
|
54 |
44 53
|
jca |
|
55 |
54
|
ex |
|
56 |
14 18 22 26 36 55
|
nnind |
|
57 |
10 56
|
syl |
|
58 |
|
nn0cn |
|
59 |
|
pncan |
|
60 |
58 39 59
|
sylancl |
|
61 |
60
|
sbceq1d |
|
62 |
61
|
biimpa |
|
63 |
62
|
adantrr |
|
64 |
57 63
|
mpdan |
|
65 |
9
|
sbcieg |
|
66 |
64 65
|
mpbid |
|