Metamath Proof Explorer


Theorem 2on0

Description: Ordinal two is not zero. (Contributed by Scott Fenton, 17-Jun-2011)

Ref Expression
Assertion 2on0 2 𝑜

Proof

Step Hyp Ref Expression
1 df-2o 2 𝑜 = suc 1 𝑜
2 nsuceq0 suc 1 𝑜
3 1 2 eqnetri 2 𝑜