Metamath Proof Explorer


Theorem 2onn

Description: The ordinal 2 is a natural number. (Contributed by NM, 28-Sep-2004)

Ref Expression
Assertion 2onn 2 𝑜 ω

Proof

Step Hyp Ref Expression
1 df-2o 2 𝑜 = suc 1 𝑜
2 1onn 1 𝑜 ω
3 peano2 1 𝑜 ω suc 1 𝑜 ω
4 2 3 ax-mp suc 1 𝑜 ω
5 1 4 eqeltri 2 𝑜 ω