Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Relations
2optocl
Next ⟩
3optocl
Metamath Proof Explorer
Ascii
Unicode
Theorem
2optocl
Description:
Implicit substitution of classes for ordered pairs.
(Contributed by
NM
, 12-Mar-1995)
Ref
Expression
Hypotheses
2optocl.1
⊢
R
=
C
×
D
2optocl.2
⊢
x
y
=
A
→
φ
↔
ψ
2optocl.3
⊢
z
w
=
B
→
ψ
↔
χ
2optocl.4
⊢
x
∈
C
∧
y
∈
D
∧
z
∈
C
∧
w
∈
D
→
φ
Assertion
2optocl
⊢
A
∈
R
∧
B
∈
R
→
χ
Proof
Step
Hyp
Ref
Expression
1
2optocl.1
⊢
R
=
C
×
D
2
2optocl.2
⊢
x
y
=
A
→
φ
↔
ψ
3
2optocl.3
⊢
z
w
=
B
→
ψ
↔
χ
4
2optocl.4
⊢
x
∈
C
∧
y
∈
D
∧
z
∈
C
∧
w
∈
D
→
φ
5
3
imbi2d
⊢
z
w
=
B
→
A
∈
R
→
ψ
↔
A
∈
R
→
χ
6
2
imbi2d
⊢
x
y
=
A
→
z
∈
C
∧
w
∈
D
→
φ
↔
z
∈
C
∧
w
∈
D
→
ψ
7
4
ex
⊢
x
∈
C
∧
y
∈
D
→
z
∈
C
∧
w
∈
D
→
φ
8
1
6
7
optocl
⊢
A
∈
R
→
z
∈
C
∧
w
∈
D
→
ψ
9
8
com12
⊢
z
∈
C
∧
w
∈
D
→
A
∈
R
→
ψ
10
1
5
9
optocl
⊢
B
∈
R
→
A
∈
R
→
χ
11
10
impcom
⊢
A
∈
R
∧
B
∈
R
→
χ