Metamath Proof Explorer


Theorem 2optocl

Description: Implicit substitution of classes for ordered pairs. (Contributed by NM, 12-Mar-1995)

Ref Expression
Hypotheses 2optocl.1 R = C × D
2optocl.2 x y = A φ ψ
2optocl.3 z w = B ψ χ
2optocl.4 x C y D z C w D φ
Assertion 2optocl A R B R χ

Proof

Step Hyp Ref Expression
1 2optocl.1 R = C × D
2 2optocl.2 x y = A φ ψ
3 2optocl.3 z w = B ψ χ
4 2optocl.4 x C y D z C w D φ
5 3 imbi2d z w = B A R ψ A R χ
6 2 imbi2d x y = A z C w D φ z C w D ψ
7 4 ex x C y D z C w D φ
8 1 6 7 optocl A R z C w D ψ
9 8 com12 z C w D A R ψ
10 1 5 9 optocl B R A R χ
11 10 impcom A R B R χ