Metamath Proof Explorer


Theorem 2pm13.193

Description: pm13.193 for two variables. pm13.193 is Theorem *13.193 in WhiteheadRussell p. 179. Derived from 2pm13.193VD . (Contributed by Alan Sare, 8-Feb-2014) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion 2pm13.193 x = u y = v u x v y φ x = u y = v φ

Proof

Step Hyp Ref Expression
1 simpll x = u y = v u x v y φ x = u
2 simplr x = u y = v u x v y φ y = v
3 simpr x = u y = v u x v y φ u x v y φ
4 sbequ2 x = u u x v y φ v y φ
5 1 3 4 sylc x = u y = v u x v y φ v y φ
6 sbequ2 y = v v y φ φ
7 2 5 6 sylc x = u y = v u x v y φ φ
8 1 2 7 jca31 x = u y = v u x v y φ x = u y = v φ
9 simpll x = u y = v φ x = u
10 simplr x = u y = v φ y = v
11 simpr x = u y = v φ φ
12 sbequ1 y = v φ v y φ
13 10 11 12 sylc x = u y = v φ v y φ
14 sbequ1 x = u v y φ u x v y φ
15 9 13 14 sylc x = u y = v φ u x v y φ
16 9 10 15 jca31 x = u y = v φ x = u y = v u x v y φ
17 8 16 impbii x = u y = v u x v y φ x = u y = v φ