Metamath Proof Explorer


Theorem 2pm13.193VD

Description: Virtual deduction proof of 2pm13.193 . The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. 2pm13.193 is 2pm13.193VD without virtual deductions and was automatically derived from 2pm13.193VD . (Contributed by Alan Sare, 8-Feb-2014) (Proof modification is discouraged.) (New usage is discouraged.)

1:: |- (. ( ( x = u /\ y = v ) /\ [ u / x ] [ v / y ] ph ) ->. ( ( x = u /\ y = v ) /\ [ u / x ] [ v / y ] ph ) ).
2:1: |- (. ( ( x = u /\ y = v ) /\ [ u / x ] [ v / y ] ph ) ->. ( x = u /\ y = v ) ).
3:2: |- (. ( ( x = u /\ y = v ) /\ [ u / x ] [ v / y ] ph ) ->. x = u ).
4:1: |- (. ( ( x = u /\ y = v ) /\ [ u / x ] [ v / y ] ph ) ->. [ u / x ] [ v / y ] ph ).
5:3,4: |- (. ( ( x = u /\ y = v ) /\ [ u / x ] [ v / y ] ph ) ->. ( [ u / x ] [ v / y ] ph /\ x = u ) ).
6:5: |- (. ( ( x = u /\ y = v ) /\ [ u / x ] [ v / y ] ph ) ->. ( [ v / y ] ph /\ x = u ) ).
7:6: |- (. ( ( x = u /\ y = v ) /\ [ u / x ] [ v / y ] ph ) ->. [ v / y ] ph ).
8:2: |- (. ( ( x = u /\ y = v ) /\ [ u / x ] [ v / y ] ph ) ->. y = v ).
9:7,8: |- (. ( ( x = u /\ y = v ) /\ [ u / x ] [ v / y ] ph ) ->. ( [ v / y ] ph /\ y = v ) ).
10:9: |- (. ( ( x = u /\ y = v ) /\ [ u / x ] [ v / y ] ph ) ->. ( ph /\ y = v ) ).
11:10: |- (. ( ( x = u /\ y = v ) /\ [ u / x ] [ v / y ] ph ) ->. ph ).
12:2,11: |- (. ( ( x = u /\ y = v ) /\ [ u / x ] [ v / y ] ph ) ->. ( ( x = u /\ y = v ) /\ ph ) ).
13:12: |- ( ( ( x = u /\ y = v ) /\ [ u / x ] [ v / y ] ph ) -> ( ( x = u /\ y = v ) /\ ph ) )
14:: |- (. ( ( x = u /\ y = v ) /\ ph ) ->. ( ( x = u /\ y = v ) /\ ph ) ).
15:14: |- (. ( ( x = u /\ y = v ) /\ ph ) ->. ( x = u /\ y = v ) ).
16:15: |- (. ( ( x = u /\ y = v ) /\ ph ) ->. y = v ).
17:14: |- (. ( ( x = u /\ y = v ) /\ ph ) ->. ph ).
18:16,17: |- (. ( ( x = u /\ y = v ) /\ ph ) ->. ( ph /\ y = v ) ).
19:18: |- (. ( ( x = u /\ y = v ) /\ ph ) ->. ( [ v / y ] ph /\ y = v ) ).
20:15: |- (. ( ( x = u /\ y = v ) /\ ph ) ->. x = u ).
21:19: |- (. ( ( x = u /\ y = v ) /\ ph ) ->. [ v / y ] ph ).
22:20,21: |- (. ( ( x = u /\ y = v ) /\ ph ) ->. ( [ v / y ] ph /\ x = u ) ).
23:22: |- (. ( ( x = u /\ y = v ) /\ ph ) ->. ( [ u / x ] [ v / y ] ph /\ x = u ) ).
24:23: |- (. ( ( x = u /\ y = v ) /\ ph ) ->. [ u / x ] [ v / y ] ph ).
25:15,24: |- (. ( ( x = u /\ y = v ) /\ ph ) ->. ( ( x = u /\ y = v ) /\ [ u / x ] [ v / y ] ph ) ).
26:25: |- ( ( ( x = u /\ y = v ) /\ ph ) -> ( ( x = u /\ y = v ) /\ [ u / x ] [ v / y ] ph ) )
qed:13,26: |- ( ( ( x = u /\ y = v ) /\ [ u / x ] [ v / y ] ph ) <-> ( ( x = u /\ y = v ) /\ ph ) )

Ref Expression
Assertion 2pm13.193VD x = u y = v u x v y φ x = u y = v φ

Proof

Step Hyp Ref Expression
1 idn1 x = u y = v u x v y φ x = u y = v u x v y φ
2 simpl x = u y = v u x v y φ x = u y = v
3 1 2 e1a x = u y = v u x v y φ x = u y = v
4 simpl x = u y = v x = u
5 3 4 e1a x = u y = v u x v y φ x = u
6 simpr x = u y = v u x v y φ u x v y φ
7 1 6 e1a x = u y = v u x v y φ u x v y φ
8 pm3.21 x = u u x v y φ u x v y φ x = u
9 5 7 8 e11 x = u y = v u x v y φ u x v y φ x = u
10 sbequ2 x = u u x v y φ v y φ
11 10 imdistanri u x v y φ x = u v y φ x = u
12 9 11 e1a x = u y = v u x v y φ v y φ x = u
13 simpl v y φ x = u v y φ
14 12 13 e1a x = u y = v u x v y φ v y φ
15 simpr x = u y = v y = v
16 3 15 e1a x = u y = v u x v y φ y = v
17 pm3.2 v y φ y = v v y φ y = v
18 14 16 17 e11 x = u y = v u x v y φ v y φ y = v
19 sbequ2 y = v v y φ φ
20 19 imdistanri v y φ y = v φ y = v
21 18 20 e1a x = u y = v u x v y φ φ y = v
22 simpl φ y = v φ
23 21 22 e1a x = u y = v u x v y φ φ
24 pm3.2 x = u y = v φ x = u y = v φ
25 3 23 24 e11 x = u y = v u x v y φ x = u y = v φ
26 25 in1 x = u y = v u x v y φ x = u y = v φ
27 idn1 x = u y = v φ x = u y = v φ
28 simpl x = u y = v φ x = u y = v
29 27 28 e1a x = u y = v φ x = u y = v
30 29 4 e1a x = u y = v φ x = u
31 29 15 e1a x = u y = v φ y = v
32 simpr x = u y = v φ φ
33 27 32 e1a x = u y = v φ φ
34 pm3.21 y = v φ φ y = v
35 31 33 34 e11 x = u y = v φ φ y = v
36 sbequ1 y = v φ v y φ
37 36 imdistanri φ y = v v y φ y = v
38 35 37 e1a x = u y = v φ v y φ y = v
39 simpl v y φ y = v v y φ
40 38 39 e1a x = u y = v φ v y φ
41 pm3.21 x = u v y φ v y φ x = u
42 30 40 41 e11 x = u y = v φ v y φ x = u
43 sbequ1 x = u v y φ u x v y φ
44 43 imdistanri v y φ x = u u x v y φ x = u
45 42 44 e1a x = u y = v φ u x v y φ x = u
46 simpl u x v y φ x = u u x v y φ
47 45 46 e1a x = u y = v φ u x v y φ
48 pm3.2 x = u y = v u x v y φ x = u y = v u x v y φ
49 29 47 48 e11 x = u y = v φ x = u y = v u x v y φ
50 49 in1 x = u y = v φ x = u y = v u x v y φ
51 26 50 impbii x = u y = v u x v y φ x = u y = v φ