Metamath Proof Explorer


Theorem 2pmaplubN

Description: Double projective map of an LUB. (Contributed by NM, 6-Mar-2012) (New usage is discouraged.)

Ref Expression
Hypotheses sspmaplub.u U = lub K
sspmaplub.a A = Atoms K
sspmaplub.m M = pmap K
Assertion 2pmaplubN K HL S A M U M U S = M U S

Proof

Step Hyp Ref Expression
1 sspmaplub.u U = lub K
2 sspmaplub.a A = Atoms K
3 sspmaplub.m M = pmap K
4 eqid 𝑃 K = 𝑃 K
5 1 2 3 4 2polvalN K HL S A 𝑃 K 𝑃 K S = M U S
6 5 fveq2d K HL S A 𝑃 K 𝑃 K 𝑃 K S = 𝑃 K M U S
7 6 fveq2d K HL S A 𝑃 K 𝑃 K 𝑃 K 𝑃 K S = 𝑃 K 𝑃 K M U S
8 2 4 polssatN K HL S A 𝑃 K S A
9 2 4 3polN K HL 𝑃 K S A 𝑃 K 𝑃 K 𝑃 K 𝑃 K S = 𝑃 K 𝑃 K S
10 8 9 syldan K HL S A 𝑃 K 𝑃 K 𝑃 K 𝑃 K S = 𝑃 K 𝑃 K S
11 7 10 eqtr3d K HL S A 𝑃 K 𝑃 K M U S = 𝑃 K 𝑃 K S
12 hlclat K HL K CLat
13 eqid Base K = Base K
14 13 2 atssbase A Base K
15 sstr S A A Base K S Base K
16 14 15 mpan2 S A S Base K
17 13 1 clatlubcl K CLat S Base K U S Base K
18 12 16 17 syl2an K HL S A U S Base K
19 13 2 3 pmapssat K HL U S Base K M U S A
20 18 19 syldan K HL S A M U S A
21 1 2 3 4 2polvalN K HL M U S A 𝑃 K 𝑃 K M U S = M U M U S
22 20 21 syldan K HL S A 𝑃 K 𝑃 K M U S = M U M U S
23 11 22 eqtr3d K HL S A 𝑃 K 𝑃 K S = M U M U S
24 23 5 eqtr3d K HL S A M U M U S = M U S