Metamath Proof Explorer


Theorem 2pol0N

Description: The closed subspace closure of the empty set. (Contributed by NM, 12-Sep-2013) (New usage is discouraged.)

Ref Expression
Hypothesis 2pol0.o ˙ = 𝑃 K
Assertion 2pol0N K HL ˙ ˙ =

Proof

Step Hyp Ref Expression
1 2pol0.o ˙ = 𝑃 K
2 eqid Atoms K = Atoms K
3 2 1 pol0N K HL ˙ = Atoms K
4 3 fveq2d K HL ˙ ˙ = ˙ Atoms K
5 2 1 pol1N K HL ˙ Atoms K =
6 4 5 eqtrd K HL ˙ ˙ =