Metamath Proof Explorer


Theorem 2polvalN

Description: Value of double polarity. (Contributed by NM, 25-Jan-2012) (New usage is discouraged.)

Ref Expression
Hypotheses 2polval.u U = lub K
2polval.a A = Atoms K
2polval.m M = pmap K
2polval.p ˙ = 𝑃 K
Assertion 2polvalN K HL X A ˙ ˙ X = M U X

Proof

Step Hyp Ref Expression
1 2polval.u U = lub K
2 2polval.a A = Atoms K
3 2polval.m M = pmap K
4 2polval.p ˙ = 𝑃 K
5 eqid oc K = oc K
6 1 5 2 3 4 polval2N K HL X A ˙ X = M oc K U X
7 6 fveq2d K HL X A ˙ ˙ X = ˙ M oc K U X
8 hlop K HL K OP
9 8 adantr K HL X A K OP
10 hlclat K HL K CLat
11 eqid Base K = Base K
12 11 2 atssbase A Base K
13 sstr X A A Base K X Base K
14 12 13 mpan2 X A X Base K
15 11 1 clatlubcl K CLat X Base K U X Base K
16 10 14 15 syl2an K HL X A U X Base K
17 11 5 opoccl K OP U X Base K oc K U X Base K
18 9 16 17 syl2anc K HL X A oc K U X Base K
19 11 5 3 4 polpmapN K HL oc K U X Base K ˙ M oc K U X = M oc K oc K U X
20 18 19 syldan K HL X A ˙ M oc K U X = M oc K oc K U X
21 11 5 opococ K OP U X Base K oc K oc K U X = U X
22 9 16 21 syl2anc K HL X A oc K oc K U X = U X
23 22 fveq2d K HL X A M oc K oc K U X = M U X
24 7 20 23 3eqtrd K HL X A ˙ ˙ X = M U X