Metamath Proof Explorer


Theorem 2prm

Description: 2 is a prime number. (Contributed by Paul Chapman, 22-Jun-2011) (Proof shortened by Fan Zheng, 16-Jun-2016)

Ref Expression
Assertion 2prm 2

Proof

Step Hyp Ref Expression
1 2z 2
2 1lt2 1 < 2
3 eluz2b1 2 2 2 1 < 2
4 1 2 3 mpbir2an 2 2
5 ral0 z ¬ z 2
6 fzssuz 2 2 1 2
7 df-ss 2 2 1 2 2 2 1 2 = 2 2 1
8 6 7 mpbi 2 2 1 2 = 2 2 1
9 uzdisj 2 2 1 2 =
10 8 9 eqtr3i 2 2 1 =
11 10 raleqi z 2 2 1 ¬ z 2 z ¬ z 2
12 5 11 mpbir z 2 2 1 ¬ z 2
13 isprm3 2 2 2 z 2 2 1 ¬ z 2
14 4 12 13 mpbir2an 2