Metamath Proof Explorer


Theorem 2pthd

Description: A path of length 2 from one vertex to another vertex via a third vertex. (Contributed by Alexander van der Vekens, 6-Dec-2017) (Revised by AV, 24-Jan-2021) (Revised by AV, 24-Mar-2021)

Ref Expression
Hypotheses 2wlkd.p P=⟨“ABC”⟩
2wlkd.f F=⟨“JK”⟩
2wlkd.s φAVBVCV
2wlkd.n φABBC
2wlkd.e φABIJBCIK
2wlkd.v V=VtxG
2wlkd.i I=iEdgG
2trld.n φJK
Assertion 2pthd φFPathsGP

Proof

Step Hyp Ref Expression
1 2wlkd.p P=⟨“ABC”⟩
2 2wlkd.f F=⟨“JK”⟩
3 2wlkd.s φAVBVCV
4 2wlkd.n φABBC
5 2wlkd.e φABIJBCIK
6 2wlkd.v V=VtxG
7 2wlkd.i I=iEdgG
8 2trld.n φJK
9 s3cli ⟨“ABC”⟩WordV
10 1 9 eqeltri PWordV
11 10 a1i φPWordV
12 2 fveq2i F=⟨“JK”⟩
13 s2len ⟨“JK”⟩=2
14 12 13 eqtri F=2
15 3m1e2 31=2
16 1 fveq2i P=⟨“ABC”⟩
17 s3len ⟨“ABC”⟩=3
18 16 17 eqtr2i 3=P
19 18 oveq1i 31=P1
20 14 15 19 3eqtr2i F=P1
21 1 2 3 4 2pthdlem1 φk0..^Pj1..^FkjPkPj
22 eqid F=F
23 1 2 3 4 5 6 7 8 2trld φFTrailsGP
24 11 20 21 22 23 pthd φFPathsGP